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Abstract

Financial market volatility is known for its unpredictable, jagged behavior, far removed from the
smooth fluctuations assumed in classical models. This essay offers a clear and intuitive exploration
of rough volatility, a paradigm that embraces the market’s inherent irregularity by modeling volatil-
ity with fractional Brownian motion and stochastic Volterra equations. We begin by explaining how
the Hurst parameter quantifies roughness, then contrast standard Brownian motion’s memoryless
nature with fractional Brownian motion’s long-term dependence. Building on these foundations,
we introduce fractional calculus and demonstrate how fractional integrals endow volatility models
with persistent memory. The discussion culminates in the formulation of stochastic Volterra equa-
tions, which capture both mean-reversion and rough noise through singular kernels. By blending
mathematical rigor with accessible intuition, this essay illuminates why rough volatility models
calibrated to real market data offer more realistic risk assessments and pricing tools than their

classical counterparts.

1. Introduction

The modeling of financial volatility has been a cornerstone of quantitative finance, with traditional
models often relying on the assumption of standard Brownian motion to describe price dynam-
icsﬂ However, empirical observations of real market data have consistently revealed that volatility
exhibits much more irregular and erratic behavior than these conventional models predict. This
phenomenon has led to the development of rough volatility models, which provide a more accu-
rate mathematical framework for capturing the inherent complexity of financial markets. Rough
volatility models represent a major shift in our understanding of volatility dynamics, moving away
from the smooth, predictable paths of standard Brownian motion toward models that can accom-
modate the jumpy, memory-dependent nature of actual market volatility. By the means of this
essay, we aim to explore the theoretical foundations of rough volatility models, with particular
emphasis on the role of the Hurst parameter, fractional Brownian motion, and the mathematical

machinery of fractional calculus that runs these models.Given the computational challenges asso-
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ciated with fractional stochastic processes, researchers have developed multifactor approximations
of rough volatility models. These approximations maintain the essential characteristics of rough
volatility while making the models more tractable for practical implementation. Multifactor ap-
proximations typically involve representing the fractional process as a sum of standard processes
with different time scales, each capturing different aspects of the memory structure. This approach
allows practitioners to retain the benefits of rough volatility modeling while working within exist-
ing computational frameworks. Rough volatility models have significant implications for derivatives
pricing and risk management. The non-Markovian nature of these models means that the entire
path history becomes relevant for pricing, not just the current state. This path dependence can
lead to substantial differences in option prices compared to traditional models. Furthermore, the
rough nature of volatility implies that volatility forecasts should incorporate long memory effects,
potentially improving the accuracy of risk measures such as Value at Risk (VaR) and Expected
Shortfall.

2. Roughness in Volatility

Extensive empirical analysis of financial market data has consistently demonstrated that real market
volatility is significantly more irregular than what standard models predict. The log-volatility, i.e.
the logarithm of volatility exhibits particularly erratic behavior, especially at short time scales.
This finding has profound implications not just for risk management and derivatives pricing but
also for market microstructure as well. Empirical studies have revealed that in practice, financial
data suggests H ~ 0.1 — 0.2, which is substantially less than the value H = 0.5 associated with
standard Brownian motion. Such empirical findings provide strong evidence for the rough nature

of volatility and justifies the need for more sophisticated modeling approaches.

2.1. The Hurst Parameter

The fundamental concept underlying rough volatility models is the quantification of volatility’s
“memoryness” or smoothness through a parameter known as the Hurst parameter, denoted as H.
This parameter serves as a critical indicator of the temporal correlation structure within volatility
processes. The Hurst parameter provides a clear taxonomy for understanding different types of
stochastic behavior, for example when H < 0.5, the process exhibits anti-persistent behavior,
characterized by frequent reversals and jumps, making the volatility “rough”. At exactly H = 0.5,
the volatility follows standard Brownian motion, representing the classical case with no memory
. For H > 0.5, the process displays persistent behavior, resulting in smooth volatility paths with

positive temporal correlations.

2.2. Fractional Calculus

The mathematical foundation of rough volatility models rests on fractional calculus, particularly
fractional integrals. Understanding these mathematical constructs is crucial for grasping how rough

volatility models operate.



Definition 2.1 (Riemann-Liouville Fractional Integral). For a function f : [a,b] — R that is locally
integrable and a € C with (a) > 0, the Riemann-Liouville fractional integral of order « is defined
as

1°f(x) = F;) [w-ortrwa (1)

where T'(-) denotes the gamma function and a is a fixed base point.The operator I¢ generalizes
the concept of repeated integration through Cauchy’s formula for n-fold integration. For positive

integers n, we have:

I"f(z) = (n—ll)' /az(:c — )" f(t)at (2)

The fractional integral exhibits several important properties that illuminate its behavior for different

values of a. Firstly, when o = 1, the fractional integral reduces to the standard Riemann integral
1 1 “ 1-1 *
@) = @0 0= [ s ar (3)

Next, for & = 1/2, we obtain the semi-integral, a true fractional operator

1 x _ I T ()
F(1/2)/a (z-%) Wf(t)dt_ﬁ/a V-1

The fractional integral can be expressed as a convolution with a power-law kernel. We define the

I'2f(z) = dt (4)

fractional kernel

a—1
Kalt) = a7 Lom 5)
where 1y o) is the indicator function. Then:
If(@) = (Ko @) = [ Kalo = 05(t)dt (6)

The convolution structure reveals that fractional integration introduces memory effects, where the
kernel K (t) acts as a weighting function that determines how past values of f influence the current
fractional integral.

Theorem 2.2 (Semigroup Property). The fractional integral operators satisfy the fundamental

semuigroup property:
1°1°f =1t (7)

for a, B > 0, provided the integrals exist.

The parameter « controls the strength and decay rate of the memory effect. As a decreases toward
zero, the kernel K (t) exhibits increasingly singular behavior near ¢t = 0, corresponding to stronger

memory effects and rougher sample paths in stochastic applications.

3. Stochastic Volterra Equations

3.1. Fractional Brownian Motion

A standard Brownian motion, or Wiener process, B(t) is a centered Gaussian process on a prob-
ability space (2, F,P) with continuous paths, B(0) = 0, and covariance E[B(s)B(t)] = min{s, t}.



Equivalently, B(¢) has independent, stationary increments such that for 0 < s < ¢, B(t) — B(s) ~
N(0,t — s). The process is a continuous martingale with respect to its natural filtration F; =
o(B(u) : 0 < u < t), since E[B(t) | Fs] = B(s) fors < t, and it satisfies the strong Markov
property [1, 2]. Moreover, Brownian motion is self-similar with Hurst exponent H = 1/2, meaning
{B(ct) : t > 0} 4 {VeB(t) : t > 0}, and arises as the weak limit of rescaled random walks by

Donsker’s theorem [3].

In contrast, a fractional Brownian motion with Hurst parameter H € (0,1), denoted B (t), is the

unique centered Gaussian process with covariance
E[BA (s)BH(t)] = L (s* + 27 — |t — s|*1).

It admits the Mandelbrot—Van Ness representation [4]:

BH(t) = —

TTH+D /0 ((t—U)H% —(—u)Hé)dW(u)ju/ot(t—u)H% AW (u)|,
2

—00

where W(u) is a standard Brownian motion. Fractional Brownian motion exhibits long-range

dependence when H # %: the increments correlation decays as
Corr(BH(t +1) — B (t), BH(s +1) — B (5)) ~ C |t — s|*H 72,
for large |t — s|. It is self-similar of order H,
(BH(ct) 1t >0V L {HBH () : t > 0},

and its sample paths are almost surely Holder continuous of any exponent v < H but nowhere differ-
entiable [5] [6]. Gatheral, Jaisson, and Rosenbaum [7] provide empirical evidence that log—volatility
in financial markets behaves like a fractional Brownian motion with H = 0.1, far lower than 1/2.
This roughness (H < 1/2) generates persistent volatility clustering and non-Markovian effects ab-
sent in classical stochastic volatility models, motivating the rough fractional stochastic volatility
framework.

Rough volatility models can be viewed as instances of stochastic Volterra equations, which generalize
1t6 SDEs by allowing the drift and diffusion coefficients to depend on the entire past trajectory via
a convolution kernel. In its simplest form, a stochastic Volterra equation for a process X; can be
written as

t t
Xt:X0+/ K(t,5)b(s, X,) ds + / K(t,5) o(s, X,) dW,,
0 0

where W is a standard Brownian motion, b and o are measurable coefficient functions, and K (t, s)
is a deterministic kernel capturing memory. When K (t,s) = 1, this reduces to the classical It6

SDE. More generally, K may be singular as t | s, inducing rough paths in X.



Matcha with Ayyar

Consider this puzzle over your morning coffee: Suppose we have a general Volterra integral

equation of the form .
u(O) = 1O+ [ Kt s)g(s9(5) ds,

where K (t, s) is our memory kernel that weighs how much the past values y(s) influence the
current value y(t).

Question: What happens if we set the kernel to be completely "flat", that is, K(t,s) = 1
for all £ and s? Can you show that this transforms our memory-laden Volterra equation into
a simple, memoryless differential equation?

Hint: Think about what differentiation does to an integral, and remember the fundamental

theorem of calculus.

To understand the connection between Volterra equations and classical differential equations, con-

sider a general deterministic Volterra integral equation of the second kind:

oit) = £+ [ Kt 9)g(s,u(s)) ds,

where f(t) is a given function, K(¢,s) is the kernel, and g(s,y) represents a nonlinear coefficient
function. Now, let us examine what happens when we set the kernel to the constant function

K(t,s) = 1. The Volterra equation becomes

y(t) = f(t) + /Otg(s,y(s)) ds.

By applying the fundamental theorem of calculus and differentiating both sides with respect to ¢,

we obtain J of
Y
= — t,y(t)).
o = g TIty®)
This is a classical first-order ordinary differential equation with initial condition y(0) = f(0).

Consider the linear case where g(s,y) = ay(s) + b for constants a and b, and let f(¢t) = yo be

constant. The Volterra equation becomes

y(t) = yo + /Ot(ay(s) + b) ds.

Differentiating with respect to ¢

dy
L —ay(t)+b
o = ay(t) +b,

with initial condition y(0) = yo.This is a standard linear ODE whose solution can be found using

an integrating factor. The general solution is

b b
ot) = (w7 ) e = 2.
a a



We can verify this satisfies our original Volterra formulation by substituting back

fiarsne- [lmet)rt o o
:/Ota(yo+2) " ds ©)

b
—(w+ ) -1 (10)
=y(t) = o, (11)
confirming that y(t) = yo + Ji(ay(s) + b) ds.This pattern demonstrates how setting K(t,s) = 1
reduces the memory-dependent Volterra equation to a memoryless differential equation, where the
solution at time ¢ depends only on the current state y(¢) rather than the entire history {y(s) : 0 <

s < t}. The transition from Volterra to ODE represents a loss of path dependence and long-range

memory effects that are crucial for modeling rough volatility phenomena.

3.2. The Exponential Kernel: Another Path to Classical Dynamics

We now explore a more sophisticated example that demonstrates how certain memory kernels
can still reduce Volterra equations to ordinary differential equations, albeit through a more subtle

mechanism.

Theorem 3.1 (Exponential Kernel Reduction). Consider the Volterra integral equation

t
y(t) = yo + /0 e~ Mt=5)g (s, y(s)) ds,

where X\ > 0 is a decay parameter and g(s,y) is a measurable function. This equation is equivalent
to the second-order ordinary differential equation

d%y dy dg
— A — (L y(t) = Ag(t,y() =0,

with initial conditions y(0) = yo and %(0) = ¢(0,0).-

Proof. Let us denote the Volterra equation as

y(t) = yo + I(1),

where .
1) = [ g5, y(5)) .
0
First, we differentiate y(t) with respect to ¢ % = fl—{.. To compute %, we use the fundamental
theorem of calculus and the product rule. For the integral I(t) = [i e A=) g(s, y(s)) ds, we have:

L -xa-n (t,y(t)) + "0 s (s,y(s)) ds
ar gty o Ot gis,y .



Since e=*t=t) = 1 and %e_’\(t_s) = —Xe M%) we obtain

% = g(t,y(t)) — A/Ot e Mg (s, y(s)) ds.

Observing that fg e M9 g(s,y(s)) ds = I(t) = y(t) — yo, we have:

dy
5 = 96 y(@) = Ay(t) = wo)-
Differentiating once more
d*y _ dg dy
— = Lt y(t) — A—.
gz~ a0 A
. . . d
Substituting our expression for 77
d*y _ dg

a2 = g ) = Alg(ty(t) = Aly(t) = wo)].-

Rearranging terms, we obtain the result

d?y dy dg

Y 2SS y(0) - Mgl y(0) = —N(y(2) — 30)

However, from our first-order relation % =g(t,y(t))—A(y(t)—yo), we have A(y(t)—yo) = g(t, y(t))—
%. Therefore:

Py dy dg

i )\E - a(ﬂy(t)) —Ag(t,y(t) = 0.

The initial conditions follow directly: y(0) = yo from the original equation, and %(0) = ¢(0,y0)
from our first differentiation. O

3.3. Formulation and Intuition

In the context of rough volatility, one often considers the log—variance process V; satisfying

1
Lt—s)f2
V:V+/7 0 — AV ds+v/

! 0 0 F(H-I—%)( ) 0

is the fractional integral kernel of order H + % The deterministic convolution term models

mean-reversion with memory, while the stochastic convolution introduces rough Gaussian noise.

3.4. Ezistence, Uniqueness, and Regularity

Under suitable Lipschitz and growth conditions on b and ¢, and for kernels satisfying
t
/ K(t,s)?ds < oo,
0
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one can establish existence and uniqueness of adapted solutions by Picard iteration in Banach spaces
of Hélder—continuous functions [8, @]. Moreover, if K(t,s) ~ (t — s)*~! near s — ¢, the solution
inherits Holder regularity of order v < oo — %, yielding exactly the observed roughness for H < %
The Volterra formulation makes clear why rough volatility models capture both the persistent
clustering of realized variance and the non—Markovian, path—dependent effects evidenced in option
markets. Calibration to SPX VIX futures and SPX option smiles confirms that models with H ~ 0.1
fit market data significantly better than classical Markovian stochastic volatility models [10, 1T].
The Volterra structure also enables efficient simulation via hybrid schemes that approximate the

convolution by a finite sum of exponentials, preserving both memory and tractability.

4. Implications, Applications and Conclusion

The fractional integral framework provides a natural explanation for the well-documented phe-
nomenon of volatility clustering in financial markets. The memory weighting function K, ensures
that past volatility shocks continue to influence current volatility levels, with the influence decay-
ing according to a power law rather than exponentially. This power-law decay is fundamentally
different from the exponential decay assumed in traditional volatility models such as GARCH, and
it provides a more realistic representation of how volatility persistence manifests in real markets.
Rough volatility models represent a significant advancement in our ability to model and understand
financial market dynamics. By incorporating the empirically observed rough nature of volatility
through the mathematical framework of fractional calculus, these models provide a more accurate
and realistic representation of market behavior. The key insights from rough volatility models
include the fundamental importance of the Hurst parameter in characterizing volatility dynamics,
the role of fractional Brownian motion in capturing non-Markovian behavior, and the mathemati-
cal elegance of fractional integrals in creating memory effects through convolution with power-law
kernels.As financial markets continue to evolve and generate increasingly complex data, rough
volatility models offer a robust theoretical foundation for developing more sophisticated risk man-
agement tools and pricing models. The ongoing research in this field promises to further enhance
our understanding of market microstructure and volatility dynamics, ultimately leading to more
effective financial models and better-informed investment decisions. The transition from standard
to rough volatility modeling represents not merely a technical improvement, but a fundamental
shift in how we conceptualize the nature of financial risk and market behavior. This paradigm shift
opens new avenues for research and practical applications that will undoubtedly shape the future

of quantitative finance.
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