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Abstract 

The work investigates optimal execution strategies in financial markets under both deterministic 

and stochastic frameworks, focusing on minimizing transaction costs while managing 

informational asymmetries. We build upon foundational works such as Almgren and Chriss (2000) 

and Kyle (1985) bridging discrete-time optimization and continuous-time stochastic control to 

develop a unified approach for informed traders operating in markets with price impact and 

dynamic liquidity. Further, the thesis extends the canonical Kyle model by introducing a finite-

horizon equilibrium with risk-averse agents and learning market makers, endogenizing the price 

impact function as a response to order flow informativeness. We also perform an empirical 

estimation of relevant parameters using data of close to 100 Million trades for over 8,000 stocks 

in the NYSE and NASDAQ for the year 2022 validating such a model’s theoretical constructs and 

providing insight into the distribution and interdependence of price impacts and the key role they 

play in optimal execution of transactions. 

 

 

  



  



1. Introduction 

Liquidity is a multifaceted concept, varying in its interpretation across different contexts. Financial 

Economists and Mathematicians alike have been studying this for over four decades now. Liquidity 

(and often illiquidity) is in my opinion an elusive construct—recognizable in practice but 

challenging to precisely define (see Amihud, Mendelson, and Pedersen, 2012). From a fundamental 

asset pricing perspective, liquidity can be conceptualized as the present value of all future 

discounted transaction costs. There exist conflicting views but for one thing is certain – transaction 

costs can’t be ignored. The consequences of this may be manyfold – First, liquidity directly relates 

to asset pricing and leads to a reduction in value of asset prices due to discounted transaction costs. 

Second, liquidity risk has been a subject of contention for a long time now, but the implications 

of this on trading and transaction costs have in my opinion well researched although a framework 

that unifies many conflicting viewpoints is yet to take a seat. Earlier, traders, when submitting their 

demands, would consider the information content of the price but not the price impact of their 

trade. To understand this, let’s consider a hypothetical example of a hedge fund holding a position 

of 5 million shares in Tesla (TSLA) which is advised to relocate the shares due to an ongoing 

portfolio reconstruction. Such a relocation may also be made if there exists some information that 

the hedge fund possesses such that liquidating this large position shall make the insider (the hedge 

fund in our case) gain profits. But , with an average daily volume of 30 million shares, an abrupt 

liquidation of 5 million shares (approx. 16% of ATV) would have a significant impact on the price. 

There are two obvious options available to the fund – (a) sell everything now at a known price 

entailing a high price impact or (b) sell in equal size packets over a given time horizon to minimize 

price impact but at the same time holding significant risk of price change over time. A third 

alternative may be as follows - split orders proportionately to the intraday volume by a VWAP 

algorithm, which may be better than a naïve execution strategy but may still have significant 

slippage. From a purely mathematical perspective, we have evidence to believe that  all of these 

strategies may in fact be inefficient as such order execution mechanisms don’t take into 

consideration either/both the implementation shortfall or variance of the price dynamics. By the 

means of such an essay, we intend to discuss a class of algorithms that deal with the optimal trading 

strategy of a rational trader to overcome such limitations. 

2. Relevant Literature 

The effect of liquidity costs on security prices and returns was first studied by Amihud and 

Mendelson (1986) who defined liquidity as a measure of trading costs through the mechanism of 

the bid-ask spread. Amihud (2002) proposes that expected market illiquidity has a significant 

impact on the returns of individual stocks. Utilizing an autoregressive model, his study introduces 

the concept of unexpected liquidity shocks, which exhibits a peculiar characteristic one would like 

to describe as follows -  Illiquidity in a given year increases the anticipated illiquidity for the 

subsequent year, which is associated with higher expected stock returns or lower asset prices; 

however, an unexpected increase in illiquidity tends to result in a decline in stock returns, contrary 

to the effects observed with expected illiquidity. Hence, not all forms of liquidity follow a uniform 

logic. While expected illiquidity is factored into market dynamics and investor expectations, 

absorbing its costs through pricing mechanisms, unexpected liquidity shocks operate outside the 

realm of foresight, triggering reactions that markets are ill-prepared to accommodate.  



Chordia, Roll, and Subrahmanyam (2001), along with Hasbrouck and Seppi (2001), argue that 

market-wide liquidity significantly influences individual stock liquidity, a phenomenon they refer 

to as liquidity commonality. Their findings suggest that a portion of stock-specific liquidity is 

driven by broader market liquidity conditions, implying that fluctuations in the average liquidity of 

the market are reflected in the liquidity levels of individual stocks. Liquidity and Asset Pricing have 

been subject to a rigorous study by Acharya and Pedersen (2005). The Acharya-Pedersen 

framework decomposes (while extending the standard CAPM to accommodate for transaction 

costs) the net beta into risks pertaining to (i) commonality in liquidity, (ii) return sensitivity to 

market liquidity and (iii) liquidity sensitivity to market returns. They also explore cross-sectional 

predictions of such a model using NYSE and AMEX stocks for a large sample period. In 

particular, (iii) seems to be of interest to the asset pricing literature. Brunnermeier and Pedersen 

(2009) highlight that market liquidity (which they refer to as the ease of trading) is tightly connected 

to a trader’s funding liquidity, i.e. the availability of capital. When an initial liquidity shock occurs, 

traders face funding constraints which reduce their capacity to provide liquidity. This effect, in 

turn, increases volatility, as lower liquidity leads to larger price impacts and wider order imbalances. 

Within a general equilibrium framework, they show that uninformed financiers tightening margins 

during volatile periods triggers a destabilizing feedback loop. 

With a series of models introduced, the first of which by Kyle (1985) took into cognizance the 

optimal strategy of a trader based on the risks of price impacts using a conjectured equilibrium 

approach. This created a new class of models effectively separating trade models into two 

categories – (a) Walrasian batch models and (b) Dealer or sequential trade models. Notable 

extension of the former class of models include that by Admati and Pfleiderer (1988), Kyle (1989) 

and Foster and Vishwanathan (1990). However, both these classes of models were studies for the 

means of understanding the mechanism of price formation in markets, although in my opinion, 

the optimal strategy of the trader was not an object of interest by itself. Over time, empirical 

research has consistently demonstrated that intraday liquidity patterns—encompassing volatility, 

trading volume, and order flow—exhibit a characteristic U-shaped pattern. That is, these variables 

tend to be elevated at market open, decline through midday, and subsequently rise again toward 

the market close (see, for example, Harris (1986), Jain and Joh (1988), and Kirchner and Schlag 

(1998)). Although it seems that such patterns were not fully explainable, partial explanations 

include that regarding reduced adverse selection costs (see Hasbrouck (1991) and Foster and 

Vishwanathan (1993)). Some studies such as that by Bessembinder (1994) and Amihud and 

Mendelson (1982) indicate increased overnight inventory holding costs as a possible explanation 

for the surge in intraday patterns before the end of the day. An innovation was introduced when 

Bertsimas and Lo (1998) proposed that a dynamic optimization approach be formally introduced 

to derive trading strategies that minimize the expected cost of executing trades over a given period. 

Such a framework demonstrated that, under a variety of conditions, an optimal trading trajectory 

could be identified to achieve cost efficiency. However, their model does not explicitly account 

for the volatility of order execution costs. They further establish that a naïve strategy of executing 

trades by selling a constant number of shares at equally spaced time intervals is optimal if and only 

if price impacts are both linear and permanent, and if stock prices follow an arithmetic random 

walk. Additionally, their study acknowledges the influence of exogenous factors, such as prevailing 

market conditions and initial holdings, on the optimal liquidation strategy.  



A profound evolution in the theory of optimal execution emerged with the work of Almgren and 

Chriss (2000), who introduced a class of algorithms designed to balance execution efficiency with 

risk control. Their framework is rooted in the minimization of a utility function, wherein the 

objective is not merely to reduce transaction costs but to navigate the trade-off between expected 

revenue and the inherent uncertainty in execution better known today as the Implementation 

shortfall. This strategy works in a framework of maximizing the expected revenue of a trade (in 

other words minimizing execution costs) with a suitable penalty for the uncertainty of revenue. In 

such an endeavor, the Almgren-Chriss (henceforth, AC) framework comes up with an efficient 

frontier of optimal execution strategies, each for a given level of risk aversion. Much like the 

efficient frontier in portfolio theory, this approach developed the fundamental idea that any 

reduction in risk must necessarily come at the expense of cost efficiency, and vice versa. Thus, the 

problem of optimal execution is not mere cost minimization and henceforth, enters the realm of 

decision-making under uncertainty, where market participants must calibrate their strategies based 

on their individual risk tolerance and market conditions. Subsequent extensions of such a model 

have been proposed, notably by Hisata and Yamai (2000) and Dubil (2002), who introduce 

endogenous considerations regarding the final liquidation horizon. A common methodological 

feature among these studies is the reliance on a VaR framework to model execution risks, alongside 

the assumption of a constant trading velocity. Hisata and Yamai (2000) further contribute by 

providing closed-form solutions for market impact functions characterized by the square-root law 

and by developing a numerical framework for obtaining such solutions. Dubil (2002), in contrast, 

examines both linear and power-law impact functions, deriving specialized parameterizations for 

each case.  

More recent models extend the liquidation framework to incorporate trading via limit orders. 

Among these, Gueant, Lehalle, and Tapia(2012) link the optimal trade execution schedule to the 

pricing strategy within the limit order book. Their framework employs a HJB equation-based 

approach, modeling the liquidation process as a control problem that accounts for both non-

execution and price-based risks.The aim of this essay is multifold – First, we demonstrate an 

appreciation for existing models for they set among other things a very clear and baseline 

framework to work with. Second, we attempt to formulate an informed trader’s optimal execution 

trajectory within two complementary frameworks - (i) as a constrained optimization problem in 

discrete time, following the Almgren–Chriss (2000) model extended as a stochastic control 

problem, generalizing the approach developed by Guéant (2016)., and (ii) as a competitive REE 

equilibrium with dealer learning. We show that in equilibrium, the process by which an informed 

trader trades are in fact heavily influenced (a) by his/her intentions and (b) whether or not the 

market maker knows of their intentions. We have in our humble attempt, tried to unify two 

frameworks that may in the first instance seem conflicting or contradicting but on a deeper level 

pertain to some interesting conclusions. 

3. Optimal Execution Models 

In this section, we begin by establishing a deterministic structure of the AC framework under 

various execution cost assumptions, before transitioning into its stochastic formulation. We 

consider a single informed trader holding a portfolio comprising 𝑁 risky assets, where his position 

at time 𝑡 could be represented by a grid 𝑥𝑡 ∈ ℝ
𝑛. Each component (𝑥𝑡)𝑖  denotes the number of 

shares (or proportional wealth allocation) held in asset 𝑖 at time t. Due to exogenous events, the 



trader seeks to optimally transition from such an initial portfolio 𝑥0 ∈ ℝ
𝑛 to a terminal target 

portfolio state 𝑥∗ ∈ ℝ𝑛, typically chosen as 𝑥∗ = 0 in order to represent a state of complete 

liquidation.  It may now be obvious that naïve execution strategies discussed in the beginning of 

this essay be in fact not be the wisest choice to proceed with. Hence, execution process is now 

discretized over N periods with time step 𝜏 =
𝑇

𝑁
, where 𝑇 > 0 can be considered the total liquidation 

horizon. For the purpose of demonstration, we consider a single-asset case although a 

generalization to the multi-asset setting is definitely possible but as a case with similar outcomes, 

is not an article of discussion in this essay. Since we know that the informed trader now holds 𝑥0 

shares of the stock, we let 𝑥𝑘 denote the remaining inventory at the beginning of interval 𝑘 ∈

{ 1,… ,𝑁 } where each interval is of a time-step 𝜏.  Defining the number of shares sold during 

interval [𝑡𝑘−1, 𝑡𝑘] as  𝑛𝑘 = 𝑥𝑘−1 − 𝑥𝑘, inventory trajectory needs to satisfy 𝑥𝑡 = 𝑋 − ∑ 𝑛𝑘
𝑡
𝑘=1 . Here, 

𝑥𝑡 represents the total amount of shares the trader is holding at a given time t.  We now proceed 

to show the execution strategies obtained by Almgren and Chriss (2000), generalize these and then 

analyze whether such a strategy may be considered optimal from the insider’s point of view. Let’s 

take the security’s price to evolve according to an arithmetic Brownian motion given by1 

𝑆𝑘 = 𝑆𝑘−1 + 𝜎𝑠 𝜏
0.5 ϵk − 𝜏𝑔 (

𝑛𝑘
𝑇
) 

where 𝜎𝑠 is the volatility parameter, 𝜖𝑘 is a draw from a set of standard normally distributed 

functions which depend on the average rate of trading 𝑣 =
𝑛𝑘

𝑇
, which we shall soon also refer to 

the velocity of trade.  In an ideal world, if all shares were sold at the price 𝑆0 without any price 

impact or risk, the total trading revenue may be given as 𝜋 = 𝑋𝑆0. However, considering a more 

realistic scenario, there are price impacts and other costs associated with such a liquidation process 

which in the horizon of the liquidation process can be both (a) substantial given the large position 

size and (b) interfere with the optimal liquidation process as such costs reduce the profits of the 

informed trader. Hence, we define the implementation shortfall as difference between the value 

of a portfolio in an idealized frictionless world and the actual value after trading has occurred, 

considering price impact and other trading costs. The new profit if each of these 𝑁 buckets of 

shares are executed at a price  𝑆′may now be given as 𝑆′𝑛𝑘. Hence, the implementation shortfall 

which is basically the difference between the real world and theoretical profits may be given as 

𝐼. 𝑆 = 𝑋𝑆0 − ∑𝑛𝑘𝑆𝑘
′

𝑇

𝑡=0

 

We now proceed to take notice of the execution price2 which may be defined as 

 

1 Such an assumption is based on the standard practice of modelling security dynamics as an Arithmetic Brownian 
Motion compared to a Geometric Brownian  Motion for relatively shorter horizons. An assumption like this has many 
advantages over modelling the price dynamics as a GBM 
2 One must take note of the fact the execution price of a security is not exactly the price of the security. Consider a 

case where the fundamental value of a security corresponds to the last traded price (which in our case is defined as 

the mid-point of the bid-ask spread). Even in such a case, if a trader sells (buys) a position of considerable price, the 

execution price may be determined by the depth of the market in the limit order book and in certain cases would have 

to be taken as a weighted average of the shares executed at each level of the LOB considering a case of only market 



 𝑆𝑡
′ = 𝑆𝑡−1 − ℎ(𝑣) 

Notice that the execution price is dependent on the existing fundamental price (at time 𝑡 = 𝑡 − 1 ) 

and the temporary price impact ℎ(. ) which may or may not be linearly dependent on 𝑣 .Hence 

the terms Σ𝑛𝑘𝑆𝑘
′   could in fact be given by the relation 

∑𝑛𝑘𝑆𝑘
′

𝑁

𝑘=0

= 𝑋𝑆0 + ∑( (𝜎𝑠
0.5𝜖𝑘 − 𝜏𝑔(𝑣))

𝑁

𝑘=1

𝑥𝑘 − ∑𝑛𝑘ℎ(𝑣) 

𝑁

𝑘=1

  

The first term of the Implementation Shortfall (henceforth I.S) -  𝑋𝑆0  is a measure the initial 

profits that one might gain from executing a trade at the best price, but the successive terms now 

measure penalties for both (a) permanent and (b) temporary price impacts3. The price impact due 

to volatility may be expressed as (𝜎𝑠 
0.5𝜖𝑘) .  Thus, an increase in volatility directly leads to an 

increase the implementation shortfall. This is a suitable penalty imposed for high volatility stocks. 

Also, the permanent impact of the trade represented by {𝜏𝑔(𝑣)} are non-transitory in nature and 

hence depend on the selling amount. These may be carried forward through trades and hence 

directly influence the fundamental value of a security4. Transitory price impacts which may be 

given by ∑ 𝑛𝑘ℎ(𝑣)
𝑁
𝑘=1  are usually only dependent on time k and are not carried forward to the next 

trade. Such impacts which don’t get carried forward are a major source of order book resilience 

which is a discussion of a growing body of literature. The trader’s value function hence, is to come 

up with a liquidation strategy that chooses to optimally liquidate the position with a suitable penalty 

for the implementation shortfall. If the difference between the execution price and the 

fundamental price of the security is given as 𝑥 , then it may be convenient to define 𝐸(𝜁𝑡) given 

by5 

𝐸(𝜁𝑡) =
1

2
𝛾𝑋0

2 + 𝜖∑|𝑛𝑘|

𝑁

𝑘=1

+
𝜂′

𝜏
 ∑ 𝑛𝑘

2

𝑁

𝑘=1

 

The key to solving this problem is the estimation of the variable 𝐼. 𝑆 =  𝐸(𝜁) + 𝜆 𝑉𝑎𝑟(𝜁). Hence, 

the trader’s value function for the convex optimization becomes 

min
𝜁𝑡
 𝑈(𝜁𝑡) = 𝐸(𝜁𝑡) + 𝜆𝑉𝑎𝑟(𝜁𝑡) 

𝑈(𝜁𝑡) =  
1

2
𝛾𝑋2 + 𝜖∑|𝑛𝑘|

𝑁

𝑘=1

+
𝜂′

𝜏
 ∑𝑛𝑘

2

𝑁

𝑘=1

+ 𝜆( 𝜎2∑τ xk
2

𝑁

𝑘=1

) 

This is the optimization problem that the informed trader needs to solve. We now proceed with 

an analysis of different cases to be considered for such an optimization process. 

 
orders for demonstrating our case. In a later analysis, it may also be possible to consider the case of limit orders ( see 

for example , Gueant, Lehalle, and Tapia(2012)) 

3We also must remember that  𝑣 =
𝑛𝑘

𝜏
  is the velocity of liquidation or the rate of trade execution. Such a note is 

provided to the reader for their reference. 

4 A detailed analysis of temporary and permanent price impacts has been done on more than a few occasions although 

the results of such an analysis are often difficult to observe and estimate (see for example Glosten and Harris (1988)) 

although, in my opinion a general intuition may be more helpful for understanding our case. 

5 𝜂′ = 𝜂 −
1

2
𝛾𝜏 serves as the more complex parameter for estimation. 



3.1 Sequential Liquidation in Discrete Intervals 

The first of these cases deals with batching orders into smaller packets. Consider we batch a total 

position of 𝑋 shares into 𝑁 equally distributed packets , each packets holding 𝑛𝑘 =
𝑋

𝑁
  shares while 

at the same time also obtaining 

𝑥𝑘 = (𝑁 − 𝑘)𝑛𝑘 =
(𝑁 − 𝑘)𝑋

𝑁
 

as the number of shares liquidated in total by time 𝑡 = 𝑘 . We now use  the expected value and 

variance of the optimal execution functions discussed previously to get 

𝑈(𝜁) =
1

2
𝛾𝑋2 + 𝜖𝑋 +

𝜂′𝑋2

𝜏
+ 𝜆 (

𝜎2𝑇𝑋2(𝑁 − 1)(2𝑁 − 1)

6𝑁2
) 

We may also notice that since 𝜖 is from a random normally distributed draw, if the informed trader 

ends up being unlucky, there may be a significant implementation shortfall associated with such a 

draw. The main argument here is that for an infinitely small basket size (implying an infinitely large 

number of baskets) there is a solution for the optimal portfolio liquidation which turns out to be 

finite and dependent on a random draw6. Hence, such a strategy seem look great on the outward 

but may not be among the wisest available options on the table. 

 

3.2 Instantaneous Liquidation with No Price Uncertainty 

Let us draw to another extreme version of this where we liquidate the entire portfolio in the first 

step itself with given whatever price is available. Hence, the revised parameters for 𝑛0 = 𝑋, 𝑛𝑘 = 0 

and , 𝜁𝑘 = 0  give us the utility function 

𝑈(𝜁) = 𝐸(𝜁) =  ϵX +
𝜂𝑋2

𝜏
, 𝑉𝑎𝑟(𝜁) = 0 

In such a scenario, we find the variance of the implementation shortfall to be negligible but on the 

other hand, the expected value for the utility function assumes a random shock dependent on the 

initial position X. If 𝜏 ≪ 𝜏′or in other words, we sell a large number of shares in a very short time 

span, it may have a significant impact on the shortfall. This now points out that for a given level 

of risk aversion, there could exist a unique optimal strategy for the execution of such a portfolio 

transaction. The essence of the AC framework shows that this is a typical constrained optimization 

problem which can be solved using Lagrange Multipliers. Specifically, the problem may be stated 

as - min
𝜁
(𝔼(𝜁) + 𝜆𝑉𝑎𝑟(𝜁))  Since for all 𝜆 > 0 there exists a unique solution 𝜁∗(𝜆) which minimizes 

the expected value of the implementation shortfall for both (a) a given level of risk aversion and 

(b) a certain amount of variance thus giving rise to an optimal portfolio trajectory which is in the 

form of an efficient frontier. To obtain a closed form solution, we shall have to set the partial 

derivatives of these parameters to zero (since 𝑛𝑘
2 = 𝑥𝑘

2 + 𝑥𝑘−1
2 − 2𝑥𝑘𝑥𝑘−1 ) .Hence, the first order 

condition is now given as 

𝑈′(𝜁) = 2𝜏 (𝜆𝜎2𝜁𝑗 −
𝜂′(𝜁𝑗−1 − 2𝜁𝑗 + 𝜁𝑗+1)

𝜏2
) + 𝜖 = 0  

  

 
6 For smaller and smaller sizes of baskets, it may spread out to evaluating this expression for a very large number of 

baskets (note that a very large number of baskets implies a small size of basket). Hence it may be interesting to evaluate  

lim
𝑁→∞

 𝑈(𝑥) which gives us the surprising (finite) solution lim
𝑁→∞

 𝑈(𝑥) =
1

2
𝛾𝑋2 + 𝜖𝑋

𝜂′𝑋2

𝜏
+
𝜆𝜎2𝑇𝑋2

3
 



We now obtain a closed form solution7 using hyperbolic sine and cosine functions given by  

𝑥𝑗 =
sinh (𝜅(𝑇 − 𝑡𝑗))

sinh(𝜅𝑇)
𝑋 

𝑛𝑗 =
2 sinh (

1
2
𝜅𝑇)

sinh(𝜅𝑇)
cosh (𝜅 (𝑇 − (𝑗 −

1

2
) 𝜏)  

 

3.3 Empirical Results 

We proceed to estimate transitory and permanent price impacts based on the econometric 

approach of Glosten and Harris (1988) as adapted by Sadka (2006). We estimate price impacts for 

8,549 stocks from the NYSE and NASDAQ for a single day chosen randomly8 in the year 2022 

using a sample of ~100 Million Trades. The estimation procedure is conducted at the individual 

stock level using intraday transaction data and proceeds in the following steps -  (1) modeling price 

changes to isolate permanent and transitory effects, and (2) aggregating firm-level estimates to 

construct market-wide illiquidity measures. In the first step, trade direction is classified as buyer- 

or seller-initiated based on the Lee and Ready (1991) algorithm. Specifically, trades executed above 

the prevailing NBBO midpoint are classified as buyer-initiated, those below as seller-initiated, and 

trades at the midpoint are excluded. We employ consolidated trade and quote data from the TAQ 

database on WRDS, and follow Chordia, Roll, and Subrahmanyam (2000) in using the National 

Best Bid and Offer (NBBO) as the reference quote. 

 

[Insert Fig. 1] 

 

Our model characterizes price impacts as linear functional forms (see Glosten and Harris, 1988) 

and hence the price impact model assumes that transaction prices are subject to both permanent 

(informational) and transitory (non-informational) effects. Let 𝐷𝑡 ∈ {+1,−1} indicate trade 

direction at event time 𝑡, where +1 denotes a buyer-initiated trade and -1 a seller-initiated trade, 

with 𝑉𝑡 the corresponding trade size.  Let 𝑚𝑡 denote the market maker’s expectation of the 

security’s fundamental value at time 𝑡. We specify the evolution of this value given as 

𝑚𝑡 = 𝑚𝑡−1 + 𝐶(𝐷𝑡 − 𝔼𝑡−1 [𝐷𝑡]) + 𝜆(𝐷𝑡𝑉𝑡 − 𝔼𝑡−1 [𝐷𝑡𝑉𝑡] + 𝑦𝑡   

where 𝐶 is the fixed permanent component of price impact, 𝜆 is the variable permanent component 

(per share traded), and 𝑦𝑡 is a public information shock. This formulation captures for the 

unexpected order flow, adjusting for autocorrelation using a five-lag AR process given as 

𝐷𝑡𝑉𝑡 = 𝛼0 + ∑𝛼𝑗𝐷𝑡−𝑗𝑉𝑡−𝑗 + 𝜖𝑡

5

𝑗=1

 

Assuming 𝜖𝑡~ 𝑁(0, 𝜎𝜖
2), the expected trade direction can be given as 

 
7 If we take  

𝜆𝜎2

𝜂′
𝜁𝑗 = 𝜅

2𝜁𝑗, the above expression simplifies into   𝜁𝑘 = 
1

𝜅2𝜏2
(𝜁𝑘−1 − 2𝜁𝑘 + 𝜁𝑘+1) 

8 The date chosen by us is September 1st , 2022 and we estimate the price impact for all stocks on  this particular day 
of the year. 



𝔼𝑡−1[𝐷𝑡] = 1 − 2𝜙 (
−𝔼𝑡−1[𝐷𝑡𝑉𝑡]

𝜎𝜖
),  

Where 𝜙(. ) denotes the cumulative standard normal distribution. Next, observed transaction 

prices 𝑝𝑡 are assumed to reflect transitory costs 𝜁   and 𝑙  where 𝜁 represents the fixed transitory 

price impact and 𝑙 is the variable transitory component impact per share. Taking first differences 

and substituting the components, we estimate 

Δ𝑝𝑡 = 𝐶(𝐷𝑡 − 𝔼𝑡−1[𝐷𝑡]) + 𝜆(𝐷𝑡𝑉𝑡 − 𝔼𝑡−1[𝐷𝑡𝑉𝑡]) + 𝜁𝐷𝑡 + ℓ 𝐷𝑡𝑉𝑡 + 𝜂𝑡 

With 𝜂𝑡 , a composite error term incorporating both pricing errors and microstructure noise. This 

regression is estimated for each stock using OLS, with corrections for serial correlation in the error 

term. 

[Insert Table 1] 

 

4. Stochastic Control in Dynamic Execution 

Let us now proceed to consider a more generalized case of the previous section. Take an informed  

trader’s initial position over the time interval [0, T] modelled by the process 𝑞𝑡 , ∀𝑡 ∈ [0, 𝑇] with the 

dynamics given by 𝑞′(𝑡) = 𝑑𝑞𝑡 = 𝑣𝑡𝑑𝑡. Here, 𝑣𝑡 represents the trading velocity which in our case is 

deterministic. The aim of this control problem is to find a solution that maximizes an objective 

function by altering the control variable. Hence, the number of shares available at each time period 

is modelled as a function of the trade velocity and time9. 

Now, we  model the price of the stock as a stochastic process given by 𝑑𝑆𝑡 = 𝜎𝑑𝑊𝑡 + 𝑘 𝑣𝑡𝑑𝑡 such 

that the price (i.e. the midpoint of the spread) is a function of the trading velocity as well as a 

Weiner process with the parameter 𝑘 given by the permanent price impact of the trade. It’s 

important to note here that the actual execution cost may/may not be a linear function of only the 

trader’s volume but could also be related with the existing market volume of other agents as well. 

Hence, the market volume process 𝑉𝑡 , ∀ 𝑡 ∈ [0, 𝑇] may be taken to be a deterministic continuous 

process which is bounded. The execution price may be directly dependent on the transaction 

volume and inversely dependent on the market volume, a argument that is not just logical but 

practical (see Gueant, 2016) . This results in the execution price being modelled by 

𝑆𝑡
′ = 𝑆𝑡 + 𝑔 (

𝑣𝑡
𝑉𝑡
) , 𝑔(0) = 0 

 

 
9 . It may now be fair to discuss the three important conditions that need to be met for any control to be admissible- 

First, the control variable 𝑣𝑡 must be progressively measurable. In other words, a decision made at time 𝑡 is only 
possible with information available until till such a time. Second, such a process must also satisfy an unwinding 

constraint 𝑠. 𝑡 ∫ 𝑣𝑡𝑑𝑡
𝑇

0
= −𝑞0. Such a condition may be logical as the trader must completely liquidate their position 

by the end of their trading endeavor. Since the initial holding is given as 𝑞0, 𝑞𝑡 = 𝑞0 + ∫ 𝑣𝑡𝑑𝑡
𝑇

0
 and at time 𝑡 = 𝑇, the 

condition of 𝑞𝑡 at time 𝑡 = 𝑇 may be zero shares.Last, process must also be bounded by the trading volume so it may 
not be possible to liquidate an unjustifiably large position of shares at any given point in time. 



[Insert Fig. 2] 

 

Consider that the informed trader executes a small position of  𝑞′(𝑡) = 𝑣𝑡 at an execution price of 

𝑆𝑡
′,  then his signed profit (negative for buying shares as one may pay to buy and get paid to sell) 

as a function of the trade velocity can be expressed as 

𝑑𝑋𝑡 = −𝑆𝑡
′𝑑𝑞 =  −𝑆𝑡

′𝑣𝑡𝑑𝑡 

For a total of N shares, the execution cost may be given by the function 𝐿(𝑁) = 𝑁𝑔(𝑁), 𝐿(0) = 0. 

In other words, 

𝐿 ∶  𝑑𝑋𝑡 = −(𝑆𝑡 + 𝑔 (
𝑣𝑡
𝑉𝑡
))𝑣𝑡𝑑𝑡 

or 

𝐿: 𝑑𝑋𝑡 = −𝑆𝑡𝑣𝑡𝑑𝑡 − 𝑉𝑡 𝐿 (
𝑣𝑡
𝑉𝑡
)𝑑𝑡 

For a more practical scenario, we may choose for L, a strictly convex power function somewhat 

like 𝐿(𝑥) = 𝜂|𝑥|1+𝑘 , 𝑘 > 0, but for the standard Almgren-Chriss framework, we choose 𝐿(𝑥) = 𝜂𝑥2. 

To solve this, consider CARA function, a form that could be represented by 𝑈 = 𝔼[−exp(𝛾𝑋𝑇)] 

where gamma is the absolute risk aversion coefficient. We now consider a case where the 

admissible control uses a deterministic strategy10. Now, to derive the optimal solution11 for such 

an optimization problem, first we have the trader’s deterministic profit given by 𝑥 =  ∫ 𝑑𝑋𝑡
𝑇

0
 

∫ 𝑑𝑋𝑡

𝑇

0

= 𝑋0 − ∫ 𝑆𝑡𝑣𝑡𝑑𝑡 − 
𝑇

0

∫ 𝐿 𝑉 (
𝑣𝑡
𝑉𝑡
)𝑑𝑡

𝑇

0

  

𝑋𝑇 = 𝑋0 + 𝑞0𝑆0 −
𝑘

2
𝑞0
2 + 𝜎∫ 𝑞𝑡𝑑𝑊𝑡

𝑇

0

− ∫ 𝐿 𝑉 (
𝑣𝑡
𝑉𝑡
)𝑑𝑡

𝑇

0

 

Considering the trader’s profits are normally distributed12, the expected value and variance of the 

cashflows are given by 

𝕍[𝑋𝑇] =  𝜎
2∫ 𝑞𝑡

2𝑑𝑡 
𝑇

0

 

𝔼[𝑋𝑇] = 𝑋0 + 𝑞0𝑆0 −
𝑘𝑞0

2

2
− ∫ 𝑉𝑡𝐿 (

𝑣𝑡
𝑉𝑡
)𝑑𝑡

𝑇

0

 

What may be important here is to understand that the final term in the expected value corresponds 

to the dynamic order execution costs which in the AC framework are modelled by the transitory 

 
10 One may argue that the execution strategy which is optimal may not necessarily be deterministic but could be 
stochastic as well. We completely agree to such an argument but on a deeper examination, it may be possible to 
show that such a strategy is in fact deterministic as well optimal (see Gueant, 2016) 
11 One  must remember the fact that 𝑑𝑆𝑡 = 𝜎𝑑𝑊𝑡 + 𝑘 𝑣𝑡𝑑𝑡 has the solution - 

𝑆𝑡 = 𝑆0 + 𝜎𝑊𝑡 + 𝑘 ∫ 𝑣𝑡𝑑𝑡
𝑡

0

= 𝑆0 + 𝜎𝑊𝑡 − 𝑞𝑡 

Hence, we may  apply the same in the integral to obtain our result. 
12 We again agree that this may be a heavy assumption but for the sake of simplicity and demonstration it may be 
important to consider such a assumption for the results obtained hold a strong intuition. 



price impacts. Gueant (2016) shows that such a problem may be given by a Hamiltonian system 

shown by 

{
 
 

 
 𝑝′(𝑡) =  𝛾𝜎2𝑞∗(𝑡)

𝑞∗′(𝑡) = 𝑉𝑡𝐻
′(𝑝(𝑡))

𝑞∗(0) = 𝑞0
𝑞∗(𝑇) = 0 

 

In the case of quadratic execution costs, we consider a quadratic function 𝐿(𝜌) = 𝜂𝜌2 then from 

the Hamiltonian system, we have 𝐻(𝜌) =
𝜌2

4𝜂
13 or the system reduces to the form of 

{
 
 

 
 
𝑝′(𝑡) =  𝛾𝜎2𝑞∗(𝑡)

𝑞∗′(𝑡) =
𝑉𝑡
2𝜂
𝑝(𝑡)

𝑞∗(0) = 𝑞0
𝑞∗(𝑇) = 0 

 

If (𝑉𝑡)𝑡 is assumed as constant, (i.e. 𝑉𝑡 = 𝑉 , ∀𝑡 ∈ [0, 𝑇]) , then we obtain 𝑞∗(𝑡) as the classic 

result given by 

𝑞∗(𝑡) =

𝑞0 sinh(√
𝛾𝜎2𝑉
2𝜂

(𝑇 − 𝑡))

sinh(√
𝛾𝜎2𝑉
2𝜂 𝑇 )

 

With the trade velocity expressed as 

𝑞∗′(𝑡) =  −

𝑞0√
𝛾𝜎2𝑉
2𝜂 cosh(√

𝛾𝜎2𝑉
2𝜂

(𝑇 − 𝑡))

sinh(√
𝛾𝜎2𝑉
2𝜂

𝑇 )

 

 

[Insert Fig. 3] 

An important consideration in the context of optimal execution strategies is the convexity of the 

unwinding process, denoted as 𝑞∗, which implies that the liquidation process is initially fast but 

progressively decelerates. Within such a framework, the trader can afford to trade aggressively in 

the early stages of execution, as this reduces market impact when the position is large. However, 

as liquidation continues and the position diminishes, the cost of further trade becomes increasingly 

sensitive to risk aversion, as the trader approaches the end of the liquidation horizon and seeks to 

avoid drastic price deviations. As the remaining position decreases, the risk aversion component 

grows in importance, and the trader becomes more cautious. The cost of trading aggressively 

towards the end of the execution period rises due to the heightened volatility associated with a 

 
13 H is the Legendre-Fenchel transform of the function L given as 𝐻(𝜌) = sup

𝑝
𝑝𝜌 − 𝐿(𝜌). It can be shown that since 

L is strictly convex, such a Hamiltonian system can be deemed to be as correct. 



smaller position and greater market impact. Hence, the trader adjusts the execution schedule to 

slow down, minimizing the potential for significant price deviations in the final stages of the trade.  

However, we show in the subsequent section that it may be very important for the informed trader 

to consider the market maker’s learning process14 in case his strategy is purely speculative15. Hence, 

for all practical scenarios, if a market maker were to conjecture such a strategy used by an informed 

trader, she would set the price to increase the informed trader’s price impact.  

5. Optimal Liquidation under Asymmetric Information 

We now proceed to show the audience how the Kyle (1985) framework fits in the results derived 

by us although the purpose of such analysis conducted was different from that intended to. We 

extend the canonical Kyle model to a finite horizon with risk-averse agents and time-varying 

impact. To show this, we now consider a discrete-time market with trading periods indexed by 

𝑡 = 1,… , 𝑇. There is a security with terminal asset value 𝑣~ 𝑁(𝜇, 𝜎𝑣
2) and three rational profit 

maximizing agents namely (i) informed trader who has private information about the fundamental 

value of the asset and intends to trade over a finite horizon 𝑇, (ii) noise traders who submit random 

orders 𝑢𝑡~𝑁(0, 𝜎𝑢
2) and are modelled as i.i.d ; and (iii) a risk averse market maker. The market 

maker observes the total order flow 𝑦𝑡 = 𝑥𝑡 + 𝑢𝑡 consisting of both the informed and uninformed 

trader’s demand schedules. The informed trader conjectures that the market maker follows a linear 

price adjustment rule given by 𝑝𝑡 = 𝑝0 +  𝜆𝑡𝑦𝑡 + 𝜇. For each 𝑡 ∈ 𝑇, the informed trader submits 

a demand schedule 𝑞𝑡  and subsequently noise traders a schedule 𝑢𝑡 while the market maker 

observes the total order flow. The aim of the informed trader in this model also remains the same 

–  Maximize profits while minimizing transaction costs for we consider his intentions to be 

speculative in nature. He may also want to reduce the risk of variance between the execution price 

and the fundamental value. Hence, the informed trader’s profit maximizing objective function is 

given as max
xt
[𝐸[𝜋𝑡] − 𝛾𝑉𝑎𝑟(𝜋𝑡)]  where 𝑥𝑡 is the number of shares liquidated (which in our case 

is for a sell program) at time t.  The market maker now sets the price 𝑝𝑡 as the conditional 

expectation of the fundamental value based on the information set observed at time t. Hence, 

𝑝𝑡 = 𝔼[𝑣|𝑦] = 𝑝0 +   𝜆𝑡𝑦𝑡 + 𝜇 .  However, this time the market maker conjectures that the 

informed trader trades linearly in the divergence from the price from its fundamental value, i.e. his 

trading strategy is of the form 𝑥𝑡 = 𝛽𝑡(𝑣𝑡 − 𝑝𝑡−1) where 𝛽𝑡 is his trading intensity in period t. In 

such a given strategy, it may be possible to show that the price impact of the informed trade 

schedule may not be constant but one that increases with time and is in fact given by 

𝜆𝑡 =
𝛽𝑡Σ 𝑡| 𝑡−1

𝛽2Σ𝑡|𝑡−1 + 𝜎𝑢
2  

, where Σ𝑡−1 = 𝑉𝑎𝑟(𝑣|𝑦1, … , 𝑦𝑡−1)is the uncertainty about fundamental value 𝑣 after period 𝑡 − 1. 

This means that as and when the informed trader trades, he risks leaking information to the market 

 
14 Although in the real world as and when an informed trader trades, he keeps revealing his information to the market 
participants and in such an endeavor, the market maker trades in a fashion to limit the informed trader’s liquidation 
process thereby acting as a brake to it. 
15 Yes, there exist cases where the trader trades for reasons not pertaining to speculation for example portfolio 
rebalancing or liquidity provisions. In all such (other) scenarios, it may not be the most important consideration for 
the informed trader (which in our case in not truly informed now for his intentions are non-speculative (see Glosten 
and Milgrom , 1985) in nature to track the signaling process of the market maker. 



maker and revealing his identity as well as intentions. Let us solve this problem backwards from 

the terminal condition all the way till time 𝑡 = 0 . Consider at time 𝑡 = 𝑇 , the informed trader 

liquidates his shares giving him the profit 𝜋𝑇 = 𝑥𝑇(𝑣𝑇 − 𝑝𝑇−1) .  The market maker observes an 

order flow 𝑦𝑇 = 𝑥𝑇 + 𝑢𝑇  . Let us define the information gap at time 𝑡 = 𝑇  as 𝑔𝑇 = 𝑣 − 𝑝𝑇−1  , 

because the noise 𝑢𝑇 has mean zero, the insider’s expected profit at time T is given as 

𝐸(𝜋𝑇) = 𝑥𝑇(𝑔𝑇 − 𝜆𝑇𝑥𝑇) 

The informed trader’s problem is now finding a demand schedule 𝑥𝑇 such that the expected value 

of his profit can be maximized as well as variance of the profit minimized. Hence the informed 

trader’s objective now becomes  

max
xT

((𝑥𝑇(𝑔𝑇−1 − 𝜆𝑇𝑥𝑇) − 𝛾𝜆𝑇
2𝑥𝑇

2𝜎𝑢
2)  

 In a more realistic situation, the market maker widens the spread to increase the price impact of 

the informed trader (see, for example Easley and O’Hara , 1997) . Taking a first order condition, 

𝑥𝑇 yields 

𝑥𝑡
∗ =

𝑔𝑇

2(𝜆𝑇 + 𝛾𝜆𝑇
2𝜎𝑢

2)
 

and 

𝛽𝑇 =
1

2(𝜆𝑇+ 𝛾𝑇
2𝜎𝑢

2)
  

Notice that if 𝛾 = 0 (risk-neutral), 𝛽𝑇 =
1

2𝜆𝑇
 and if 𝛾 > 0 , 𝛽𝑇 has a smaller value meaning the trader 

limits his variance exposure and is less aggressive. For time 𝑡 = 1,… , 𝑇 − 1,  we conjecture that the 

insider’s value function is quadratic in the gap 𝑔𝑡 = 𝑣𝑡 − 𝑝𝑡−1 i.e. 𝑉𝑡(𝑔𝑡) = 𝐴𝑡𝑔𝑡
2 with 𝐴𝑡 to be 

determined. The Bellman equation for the value function can be given as 

𝑉𝑡(𝑔𝑡) = max
𝑥𝑡
(𝔼[𝜋𝑡|𝜖𝑡] − 𝛾𝑉𝑎𝑟(𝜋𝑇|𝑔𝑡) + 𝔼[𝑉𝑡+1(𝑔𝑡+1 |𝑔𝑡, 𝑥𝑡])   

 

6. Intentionality and Liquidation – The Informed Trader’s Case 

We now solve the Bellman equation recursively by working backward from the terminal condition. 

At period T, the value function 𝑉𝑇(𝑔𝑡) = 𝑥𝑡(𝑔𝑡 − 𝜆𝑇𝑥𝑇) which is just the profit from trading and 

is not dependent on the variance of the implementation shortfall16. Reworking the value function, 

we have  

𝑉𝑡(𝑔𝑡) = max
𝑥𝑡

( 𝑥𝑡(𝑔𝑡 − 𝜆𝑡𝑥𝑡) − 𝛾𝜆𝑡
2𝑥𝑡

2𝜎𝑢
2 +

𝑔𝑡+1 
2

4(𝜆𝑡+1 + 𝛾𝑡+1 
2 𝜎𝑢

2)
)     

This can be recursively solved backward to obtain the optimal solution at each time period with 

the parameter 𝜆𝑡 given by 

𝜆𝑡 =
𝛽𝑡Σ 𝑡| 𝑡−1

𝛽𝑡
2Σ𝑡|𝑡−1 + 𝜎𝑢

2 

 
16 It may be just to criticize us for this for we consider a situation where there is no information event that may 
contribute to a change in fundamental value of the security but on another note, this case may be considered as a 
special case of Easley and O’Hara (1997) where there is an informed trader who trades the difference of the 
fundamental value and the market price. But in doing so, he chooses to camouflage his order flow and hence trades 
each of the shares at a different time. We assume that during the liquidation process, the fundamental value of the 
security remains unchanged for if it were to change, the informed trader was to have knowledge of this (by definition) 
and now change his strategy. Hence, there exists a liquidation strategy only if the informed trader is sure of the 
mispricing in the security. We consider such an assumption reasonable. 



 

[Insert Fig. 4] 

The result is a dynamic equilibrium in which informed traders begin with cautious, information-

concealing trades and gradually accelerate as the trading horizon contracts and the marginal value 

of secrecy diminishes. The market maker, in turn, updates prices more aggressively as more 

information is revealed through order flow, amplifying the informed trader’s price impact. It is 

evident that in equilibrium, the informed trader does not exploit his informational advantage in a 

single period. Instead, he strategically disseminates his trades over multiple periods to leverage his 

private information and reduce the likelihood of detection by the market maker. This order-

splitting behavior arises from the trade-off between maximizing expected profits and minimizing 

adverse price impact. However, as the end of the trading horizon nears, the opportunity to profit 

from private information contracts necessitates more aggressive execution. In a single-period Kyle 

model, all private information about 𝑣 (in that period) is partially revealed in that one shot. If 𝜎𝑢
2 

is finite and the insider is risk-neutral, some mispricing will remain because the insider does not 

want to push the price all the way to her private signal as she faces a price impact cost. The 

posterior variance update formula for the market maker may be given  Σ𝑡|𝑡 = Σ𝑡|𝑡−1 − 𝜆𝑡. Hence, 

the magnitude of the market maker’s learning depends on 𝛽𝑡  as well as 𝜎𝑢
2. When  𝜎𝑢

2 is large, it’s 

harder for the market maker to separate informed trades from noise, so learning is slower. It thus 

is a very logical argument to conjecture that the informed trader chooses to trade in a scenario 

where there is a high probability of noise trading (see Weston, 2001).  

Conversely, when 𝛽𝑡 is large (the insider is more aggressive), more information is conveyed in the 

order flow, so posterior variance drops faster. Each time the market maker observes an aggregate 

order flow, she updates her beliefs about 𝑣𝑡. This reduces uncertainty about 𝑣𝑡. As Σ𝑡 shrinks, the 

informational advantage held by the insider is eroded, effectively forcing him to realize a larger 

share of his remaining information before they are fully revealed into prices17. In the Kyle (1985) 

framework, the informed trader's central objective is to liquidate a position while minimizing the 

extent to which private information is revealed to the market maker, who infers the asset’s 

fundamental value from observed order flow. The strategic challenge faced by the informed trader 

is thus to execute trades in a manner that does not immediately or excessively signal informational 

advantage, as this would prompt the market maker to adjust prices unfavorably. Early aggressive 

trading would directly signal private information about the asset’s value, prompting the market 

maker to adjust their beliefs and set the price accordingly. By trading more cautiously at the 

beginning, the informed trader prevents large price movements and keeps the market maker’s 

estimate of the asset value relatively stable. As the liquidation period progresses and the trader's 

position nears completion, the concern over signalling diminishes, especially if the time remaining 

for unwinding is short. In this context, the informed trader faces diminishing returns from delaying 

execution, as the window to manipulate the price without revealing information becomes 

narrower. Thus, the trader may accelerate trading towards the end of the liquidation period to 

minimize the time required to exit the position, reducing the risk of market impact from 

subsequent trades. Additionally, the trader’s concern about preserving secrecy wanes, as any 

 
17 Another interesting feature here is that in equilibrium, since 𝐶𝑜𝑣(𝑣𝑡 , 𝑦𝑡) ≠ 0 , the posterior variance is strictly 
smaller than the prior. 



residual information asymmetry becomes less significant relative to the remaining size of the 

position to be liquidated.  Unlike the results discussed in the previous section—where price impact 

is typically treated as exogenous and time-invariant—this Kyle setting endogenizes market impact 

as a function of order flow informativeness. The market maker continuously updates their beliefs, 

dynamically adjusting the price impact parameter in response to perceived information leakage. If 

the informed trader observes a rising price impact over time, it may signal that the market maker 

is successfully inferring their private information. In such scenarios, the trader must adapt by 

tempering their trading intensity to reduce further leakage. 

7. Conclusion 

Our hybrid model thus highlights a fundamental difference which necessitates a reinterpretation 

of optimal execution as a problem not merely of cost minimization, but of belief management in 

an adversarial inference environment. In cases where the informed trader is certain their 

information is not being inferred (e.g., when trading for non-informational reasons such as 

portfolio rebalancing), a more aggressive strategy may remain viable. However, when the trader is 

acting on genuinely private information—such as knowing the asset is overvalued relative to 

fundamentals, the necessity of preserving informational advantage becomes paramount. Under 

such conditions, the trader may resort to obfuscation strategies, such as mimicking noise trader 

behavior, to disguise their intentions and mitigate the adverse effects of informational leakage. 

Thus, the informed trader’s optimal strategy is conditional not only on market microstructure 

frictions but also on the purpose of trading and the degree of informational asymmetry. When 

trading is motivated by private information, the trader must adopt a cautious, adaptive execution 

schedule that balances liquidation efficiency with the risk of detection by an inference-driven 

market maker. This assumption in this model is rather very relaxed because this is how the results 

seem to point to such behavior. It may be possible to model a more complex dynamic for such 

existing scenarios but the intuition behind such an endeavor remains the same. How different 

parameter changes affect this model should be an interesting task for future research, but such an 

analysis may be reserved for another fruitful day. 
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Figures and Tables 

 

Fig. 1- Distributions of Estimated Price Impacts under the Glosten and Harris (1988) Model. 

The violin plot displays the cross-sectional distributions of three key price impact components—permanent variable 

(λ), transitory variable (η), and permanent fixed (ψ)—as estimated from firm-level trade data on September 1, 2022. 

The impacts are derived from the extended Glosten and Harris (1988) model using TAQ data from NYSE and 

NASDAQ stocks. Each distribution reflects heterogeneity in firm-level execution costs, with fat tails and skewness 

indicating the presence of large idiosyncratic effects in trade-related price adjustments. All values are winsorized at the 

1st and 99th percentiles to mitigate outlier distortion. 

  



 

Fig. 2 - Pairwise Relationships among Glosten and Harris (1988) Price Impact Components 

The above matrix of scatter plots with fitted linear trends illustrates the empirical correlations between the four 

estimated price impact coefficients—transitory fixed (ε), transitory variable (η), permanent variable (λ), and permanent 

fixed (ψ)—across firm-level data. The analysis is based on NYSE and NASDAQ stocks using TAQ data from 

September 1, 2022. The plots reveal interdependencies, including a negative correlation between ψ and λ, suggesting 

compensatory roles of fixed and variable permanent components in price discovery. Overall, the weak correlations 

involving η point to its higher idiosyncratic variation with structural price impact terms. 

  



Fig 3. - Execution Trajectories by Impact Components 

The above figure illustrates optimal execution paths under each estimated component of the Glosten and Harris 

(1988) price impact model. The trading trajectories are derived under isolated influence of the four distinct impact 

coefficients: permanent variable impact (λ), transitory fixed impact (ζ), transitory variable impact (ℓ), and permanent 

fixed impact (C). Each trajectory shows the optimal remaining inventory across 50 discrete trading periods for an 

initial position of 40,000 shares, minimizing execution cost based on the respective price impact parameter. The 

steeper, convex path under ζ reflects rapid early liquidation to minimize fixed transitory costs, while the linear 

trajectories under λ and C indicate uniform execution rates under constant marginal costs. All simulations assume 

absence of information asymmetry and zero risk aversion. 

  



 

Fig. 4 - Time-Variation in Trading Intensity 

The above figure compares the evolution of absolute trading intensity |𝛽𝑡| and the conditional expectation of 

permanent variable price impact 𝔼[𝜆𝑡] simulated across 50 discrete trading periods. The left y-axis (red line) shows 

the optimal trading intensity derived from minimizing execution costs under dynamic market impact, while the right 

y-axis (blue dashed line) reflects the expected value of 𝜆𝑡  . Such an inverse relationship between |𝛽𝑡|   and 𝔼[𝜆𝑡] 

illustrates strategic liquidity timing, where traders decelerate execution when market depth deteriorates. Spikes in 𝔼[𝜆𝑡] 

signal adverse price impact conditions that discourage aggressive trading. 

 

  



Table1 - Estimated Price Impacts 

Price impacts are estimates of the Glosten and Harris (1988) model   

Δ𝑝𝑡 = 𝐶(𝐷𝑡 − 𝔼𝑡−1[𝐷𝑡]) + 𝜆(𝐷𝑡𝑉𝑡 − 𝔼𝑡−1[𝐷𝑡𝑉𝑡]) + 𝜁𝐷𝑡 + 𝑙 𝐷𝑡𝑉𝑡 + 𝜂𝑡 

where Δ𝑝𝑡 denotes the change in transaction price, 𝐷𝑡 ∈ {−1,1} indicates buyer- or seller-initiated trades,𝑉𝑡 is trade 

size and 𝜂𝑡captures residual microstructure noise and public information events.  The coefficients 𝐶 and 𝜆  represent 

fixed and variable permanent price impacts, while 𝜁 and ℓ  represent fixed and variable transitory components. The 

model is estimated using consolidated TAQ data for NYSE and NASDAQ stocks on September 1, 2022. Reported 

values are time-series means of stock-level cross-sectional estimates. 

 

Variable Obs. Mean Std.  Min Max 

C 8,549 0.00 0.01 -0.20 0.33 

𝜆(× 106) 8,549 1.11 71.30 -749.40 913.70 

𝜁 8,549 0.02 0.03 -0.17 0.31 

ℓ (× 106) 8,549 -0.19 55.40 -450.00 427.80 

 


