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Abstract

The work investigates optimal execution strategies in financial markets under both deterministic
and stochastic frameworks, focusing on minimizing transaction costs while managing
informational asymmetries. We build upon foundational works such as Almgren and Chriss (2000)
and Kyle (1985) bridging discrete-time optimization and continuous-time stochastic control to
develop a unified approach for informed traders operating in markets with price impact and
dynamic liquidity. Further, the thesis extends the canonical Kyle model by introducing a finite-
horizon equilibrium with risk-averse agents and learning market makers, endogenizing the price
impact function as a response to order flow informativeness. We also perform an empirical
estimation of relevant parameters using data of close to 100 Million trades for over 8,000 stocks
in the NYSE and NASDAQ for the year 2022 validating such a model’s theoretical constructs and
providing insight into the distribution and interdependence of price impacts and the key role they

play in optimal execution of transactions.







1. Introduction

Liquidity is a multifaceted concept, varying in its interpretation across different contexts. Financial
Economists and Mathematicians alike have been studying this for over four decades now. Liquidity
(and often illiquidity) is in my opinion an elusive construct—recognizable in practice but
challenging to precisely define (see Amihud, Mendelson, and Pedersen, 2012). From a fundamental
asset pricing perspective, liquidity can be conceptualized as the present value of all future
discounted transaction costs. There exist conflicting views but for one thing is certain — transaction
costs can’t be ignored. The consequences of this may be manyfold — First, liquidity directly relates
to asset pricing and leads to a reduction in value of asset prices due to discounted transaction costs.
Second, liquidity risk has been a subject of contention for a long time now, but the implications
of this on trading and transaction costs have in my opinion well researched although a framework
that unifies many conflicting viewpoints is yet to take a seat. Eatlier, traders, when submitting their
demands, would consider the information content of the price but not the price impact of their
trade. To understand this, let’s consider a hypothetical example of a hedge fund holding a position
of 5 million shares in Tesla (TSLA) which is advised to relocate the shares due to an ongoing
portfolio reconstruction. Such a relocation may also be made if there exists some information that
the hedge fund possesses such that liquidating this large position shall make the insider (the hedge
fund in our case) gain profits. But , with an average daily volume of 30 million shares, an abrupt
liquidation of 5 million shares (approx. 16% of ATV) would have a significant impact on the price.
There are two obvious options available to the fund — (a) sell everything now at a known price
entailing a high price impact or (b) sell in equal size packets over a given time horizon to minimize
price impact but at the same time holding significant risk of price change over time. A third
alternative may be as follows - split orders proportionately to the intraday volume by a VWAP
algorithm, which may be better than a naive execution strategy but may still have significant
slippage. From a purely mathematical perspective, we have evidence to believe that all of these
strategies may in fact be inefficient as such order execution mechanisms don’t take into
consideration either/both the implementation shortfall or vatiance of the price dynamics. By the
means of such an essay, we intend to discuss a class of algorithms that deal with the optimal trading

strategy of a rational trader to overcome such limitations.

2. Relevant Literature

The effect of liquidity costs on security prices and returns was first studied by Amihud and
Mendelson (1986) who defined liquidity as a measure of trading costs through the mechanism of
the bid-ask spread. Amihud (2002) proposes that expected market illiquidity has a significant
impact on the returns of individual stocks. Utilizing an autoregressive model, his study introduces
the concept of unexpected liquidity shocks, which exhibits a peculiar characteristic one would like
to describe as follows - Illiquidity in a given year increases the anticipated illiquidity for the
subsequent year, which is associated with higher expected stock returns or lower asset prices;
however, an unexpected increase in illiquidity tends to result in a decline in stock returns, contrary
to the effects observed with expected illiquidity. Hence, not all forms of liquidity follow a uniform
logic. While expected illiquidity is factored into market dynamics and investor expectations,
absorbing its costs through pricing mechanisms, unexpected liquidity shocks operate outside the
realm of foresight, triggering reactions that markets are ill-prepared to accommodate.



Chordia, Roll, and Subrahmanyam (2001), along with Hasbrouck and Seppi (2001), argue that
market-wide liquidity significantly influences individual stock liquidity, a phenomenon they refer
to as liquidity commonality. Their findings suggest that a portion of stock-specific liquidity is
driven by broader market liquidity conditions, implying that fluctuations in the average liquidity of
the market are reflected in the liquidity levels of individual stocks. Liquidity and Asset Pricing have
been subject to a rigorous study by Acharya and Pedersen (2005). The Acharya-Pedersen
framework decomposes (while extending the standard CAPM to accommodate for transaction
costs) the net beta into risks pertaining to (i) commonality in liquidity, (i) return sensitivity to
market liquidity and (i) liquidity sensitivity to market returns. They also explore cross-sectional
predictions of such a model using NYSE and AMEX stocks for a large sample period. In
particular, (iii) seems to be of interest to the asset pricing literature. Brunnermeier and Pedersen
(2009) highlight that market liquidity (which they refer to as the ease of trading) is tightly connected
to a trader’s funding liquidity, i.e. the availability of capital. When an initial liquidity shock occurs,
traders face funding constraints which reduce their capacity to provide liquidity. This effect, in
turn, increases volatility, as lower liquidity leads to larger price impacts and wider order imbalances.
Within a general equilibrium framework, they show that uninformed financiers tightening margins
during volatile periods triggers a destabilizing feedback loop.

With a series of models introduced, the first of which by Kyle (1985) took into cognizance the
optimal strategy of a trader based on the risks of price impacts using a conjectured equilibrium
approach. This created a new class of models effectively separating trade models into two
categories — (a) Walrasian batch models and (b) Dealer or sequential trade models. Notable
extension of the former class of models include that by Admati and Pfleiderer (1988), Kyle (1989)
and Foster and Vishwanathan (1990). However, both these classes of models were studies for the
means of understanding the mechanism of price formation in markets, although in my opinion,
the optimal strategy of the trader was not an object of interest by itself. Over time, empirical
research has consistently demonstrated that intraday liquidity patterns—encompassing volatility,
trading volume, and order flow—exhibit a characteristic U-shaped pattern. That is, these variables
tend to be elevated at market open, decline through midday, and subsequently rise again toward
the market close (see, for example, Harris (1986), Jain and Joh (1988), and Kirchner and Schlag
(1998)). Although it seems that such patterns were not fully explainable, partial explanations
include that regarding reduced adverse selection costs (see Hasbrouck (1991) and Foster and
Vishwanathan (1993)). Some studies such as that by Bessembinder (1994) and Amihud and
Mendelson (1982) indicate increased overnight inventory holding costs as a possible explanation
for the surge in intraday patterns before the end of the day. An innovation was introduced when
Bertsimas and Lo (1998) proposed that a dynamic optimization approach be formally introduced
to derive trading strategies that minimize the expected cost of executing trades over a given period.
Such a framework demonstrated that, under a variety of conditions, an optimal trading trajectory
could be identified to achieve cost efficiency. However, their model does not explicitly account
for the volatility of order execution costs. They further establish that a naive strategy of executing
trades by selling a constant number of shares at equally spaced time intervals is optimal if and only
if price impacts are both linear and permanent, and if stock prices follow an arithmetic random
walk. Additionally, their study acknowledges the influence of exogenous factors, such as prevailing
market conditions and initial holdings, on the optimal liquidation strategy.



A profound evolution in the theory of optimal execution emerged with the work of Almgren and
Chriss (2000), who introduced a class of algorithms designed to balance execution efficiency with
risk control. Their framework is rooted in the minimization of a utility function, wherein the
objective is not merely to reduce transaction costs but to navigate the trade-off between expected
revenue and the inherent uncertainty in execution better known today as the Implementation
shortfall. This strategy works in a framework of maximizing the expected revenue of a trade (in
other words minimizing execution costs) with a suitable penalty for the uncertainty of revenue. In
such an endeavor, the Almgren-Chriss (henceforth, AC) framework comes up with an efficient
frontier of optimal execution strategies, each for a given level of risk aversion. Much like the
efficient frontier in portfolio theory, this approach developed the fundamental idea that any
reduction in risk must necessarily come at the expense of cost efficiency, and vice versa. Thus, the
problem of optimal execution is not mere cost minimization and henceforth, enters the realm of
decision-making under uncertainty, where market participants must calibrate their strategies based
on their individual risk tolerance and market conditions. Subsequent extensions of such a model
have been proposed, notably by Hisata and Yamai (2000) and Dubil (2002), who introduce
endogenous considerations regarding the final liquidation horizon. A common methodological
feature among these studies is the reliance on a VaR framework to model execution risks, alongside
the assumption of a constant trading velocity. Hisata and Yamai (2000) further contribute by
providing closed-form solutions for market impact functions characterized by the square-root law
and by developing a numerical framework for obtaining such solutions. Dubil (2002), in contrast,
examines both linear and power-law impact functions, deriving specialized parameterizations for

each case.

More recent models extend the liquidation framework to incorporate trading via limit orders.
Among these, Gueant, Lehalle, and Tapia(2012) link the optimal trade execution schedule to the
pricing strategy within the limit order book. Their framework employs a HJB equation-based
approach, modeling the liquidation process as a control problem that accounts for both non-
execution and price-based risks.The aim of this essay is multifold — First, we demonstrate an
appreciation for existing models for they set among other things a very clear and baseline
framework to work with. Second, we attempt to formulate an informed trader’s optimal execution
trajectory within two complementary frameworks - (i) as a constrained optimization problem in
discrete time, following the Almgren—Chriss (2000) model extended as a stochastic control
problem, generalizing the approach developed by Guéant (2016)., and (i) as a competitive REE
equilibrium with dealer learning. We show that in equilibrium, the process by which an informed
trader trades are in fact heavily influenced (a) by his/her intentions and (b) whether or not the
market maker knows of their intentions. We have in our humble attempt, tried to unify two
frameworks that may in the first instance seem conflicting or contradicting but on a deeper level
pertain to some interesting conclusions.

3. Optimal Execution Models

In this section, we begin by establishing a deterministic structure of the AC framework under
various execution cost assumptions, before transitioning into its stochastic formulation. We
consider a single informed trader holding a portfolio comprising N risky assets, where his position
at time t could be represented by a grid x; € R™. Each component (x;); denotes the number of

shares (or proportional wealth allocation) held in asset i at time t. Due to exogenous events, the



trader seeks to optimally transition from such an initial portfolio x, € R™ to a terminal target
portfolio state x* € R™, typically chosen as x* =0 in order to represent a state of complete
liquidation. It may now be obvious that naive execution strategies discussed in the beginning of
this essay be in fact not be the wisest choice to proceed with. Hence, execution process is now

discretized over N petiods with time step 7 = =, where T > 0 can be considered the total liquidation

horizon. For the purpose of demonstration, we consider a single-asset case although a
generalization to the multi-asset setting is definitely possible but as a case with similar outcomes,
is not an article of discussion in this essay. Since we know that the informed trader now holds x,
shares of the stock, we let X} denote the remaining inventory at the beginning of interval k €
{1,..,N } where each interval is of a time-step T. Defining the number of shares sold during
interval [t,_q, t;] as ny = xp_1 — Xy, inventory trajectory needs to satisfy x, = X — X,_; n,. Here,
X¢ represents the total amount of shares the trader is holding at a given time t. We now proceed
to show the execution strategies obtained by Almgren and Chriss (2000), generalize these and then
analyze whether such a strategy may be considered optimal from the insider’s point of view. Let’s

take the security’s price to evolve according to an arithmetic Brownian motion given by'

Sk =Sk-1t0, %% ¢ — 19 (%)
where 0 is the volatility parameter, € is a draw from a set of standard normally distributed
functions which depend on the average rate of trading v = %, which we shall soon also refer to
the velocity of trade. In an ideal world, if all shares were sold at the price S, without any price
impact or risk, the total trading revenue may be given as m = XS,. However, considering a more
realistic scenario, there are price impacts and other costs associated with such a liquidation process
which in the horizon of the liquidation process can be both (a) substantial given the large position
size and (b) interfere with the optimal liquidation process as such costs reduce the profits of the
informed trader. Hence, we define the implementation shortfall as difference between the value
of a portfolio in an idealized frictionless world and the actual value after trading has occurred,
considering price impact and other trading costs. The new profit if each of these N buckets of
shares are executed at a price S'may now be given as S'n,. Hence, the implementation shortfall
which is basically the difference between the real world and theoretical profits may be given as

T

t=0

We now proceed to take notice of the execution price” which may be defined as

! Such an assumption is based on the standard practice of modelling security dynamics as an Arithmetic Brownian
Motion compared to a Geometric Brownian Motion for relatively shorter horizons. An assumption like this has many
advantages over modelling the price dynamics as a GBM

% One must take note of the fact the execution price of a security is not exactly the price of the security. Consider a
case where the fundamental value of a security corresponds to the last traded price (which in our case is defined as
the mid-point of the bid-ask spread). Even in such a case, if a trader sells (buys) a position of considerable price, the
execution price may be determined by the depth of the market in the limit order book and in certain cases would have

to be taken as a weighted average of the shares executed at each level of the LOB considering a case of only market



S¢ = St-1 — h(v)
Notice that the execution price is dependent on the existing fundamental price (at timet =t — 1)
and the temporary price impact h(.) which may or may not be lineatly dependent on v .Hence

the terms Xn;S;, could in fact be given by the relation
N N

Z NS = XSo + Z( Sey — Tg(v)) Z nh()

k=0 k=1

The first term of the Implementation Shortfall (henceforth L.S) - XS, is a measure the initial
profits that one might gain from executing a trade at the best price, but the successive terms now
measure penalties for both (a) permanent and (b) temporary price impacts’. The price impact due
to volatility may be expressed as (g5 *5¢;). Thus, an increase in volatility directly leads to an
increase the implementation shortfall. This is a suitable penalty imposed for high volatility stocks.
Also, the permanent impact of the trade represented by {rg(v)} are non-transitory in nature and
hence depend on the selling amount. These may be carried forward through trades and hence
directly influence the fundamental value of a security’. Transitory price impacts which may be
given by Y¥_; n,h(v) are usually only dependent on time k and are not carried forward to the next
trade. Such impacts which don’t get carried forward are a major source of order book resilience
which is a discussion of a growing body of literature. The trader’s value function hence, is to come
up with a liquidation strategy that chooses to optimally liquidate the position with a suitable penalty
for the implementation shortfall. If the difference between the execution price and the

fundamental price of the security is given as X , then it may be convenient to define E({;) given

by’
N
n'
EQ) = 3713 +eZ|nk| . Zni

=1
The key to solving this problem is the estimation of the Varlabl 1.S = E(Q)+ AVar({). Hence,

the trader’s value function for the convex optimization becomes

rr%itn U = E() + AVar(de)
N

N N
1 n'
U = Esz +eZlnk| +? Zni+l(0221xﬁ)
k=1 k=1

k=1
This is the optimization problem that the informed trader needs to solve. We now proceed with

an analysis of different cases to be considered for such an optimization process.

orders for demonstrating our case. In a later analysis, it may also be possible to consider the case of limit orders ( see
for example , Gueant, Lehalle, and Tapia(2012))

3We also must remember that v = Tk is the velocity of liquidation or the rate of trade execution. Such a note is

provided to the reader for their reference.
4 A detailed analysis of temporary and permanent price impacts has been done on more than a few occasions although

the results of such an analysis are often difficult to observe and estimate (see for example Glosten and Harris (1988))

although, in my opinion a general intuition may be more helpful for understanding our case.

1 o
51’ =1 — = yT serves as the more complex parameter for estimation.
2



3.1 Sequential Liquidation in Discrete Intervals

The first of these cases deals with batching orders into smaller packets. Consider we batch a total

position of X shares into N equally distributed packets , each packets holding n;, = % shares while

at the same time also obtaining
(N-Kk)X

N
as the number of shares liquidated in total by time t = k. We now use the expected value and

xp =N —k)ny, =

variance of the optimal execution functions discussed previously to get
n'X? 2 o?TX*(N—-1)(2N -1)
6N?

We may also notice that since € is from a random normally distributed draw, if the informed trader

1
U = nyz +eX+

ends up being unlucky, there may be a significant implementation shortfall associated with such a
draw. The main argument here is that for an infinitely small basket size (implying an infinitely large
number of baskets) there is a solution for the optimal portfolio liquidation which turns out to be
finite and dependent on a random draw’. Hence, such a strategy seem look great on the outward
but may not be among the wisest available options on the table.

3.2 Instantaneous Liquidation with No Price Uncertainty

Let us draw to another extreme version of this where we liquidate the entire portfolio in the first
step itself with given whatever price is available. Hence, the revised parameters for ng = X,n, = 0
and,{, = 0 give us the utility function

nX?
U)=E({)= X+ T,Var(() =0

In such a scenario, we find the variance of the implementation shortfall to be negligible but on the
other hand, the expected value for the utility function assumes a random shock dependent on the
initial position X. If 7 « t’or in other words, we sell a large number of shares in a very short time
span, it may have a significant impact on the shortfall. This now points out that for a given level
of risk aversion, there could exist a unique optimal strategy for the execution of such a portfolio
transaction. The essence of the AC framework shows that this is a typical constrained optimization
problem which can be solved using Lagrange Multipliers. Specifically, the problem may be stated
as - m{in(IE(( )+ AVar({ )) Since for all 1 > 0 there exists a unique solution {*(4) which minimizes

the expected value of the implementation shortfall for both (a) a given level of risk aversion and
(b) a certain amount of variance thus giving rise to an optimal portfolio trajectory which is in the
form of an efficient frontier. To obtain a closed form solution, we shall have to set the partial
derivatives of these parameters to zero (since ng = xf + xf_; — 2xxx_1 ) .Hence, the first order

condition is now given as

_U'(fj—1 — 2(; +(j+1)> te=0

72

U'(Q) =2t </102(j

® For smaller and smaller sizes of baskets, it may spread out to evaluating this expression for a very large number of
baskets (note that a very large number of baskets implies a small size of basket). Hence it may be interesting to evaluate
Ao?TX?

I'yv2
1\111—120 U(x) which gives us the surprising (finite) solution Al]l_l)‘[go Ulx) = %yX 2+ eX % +—=



We now obtain a closed form solution” using hyperbolic sine and cosine functions given by

B sinh (K(T - t]-)) X

X= sinh(xT)
2 sinh (% kT ) 1
= sinh(kT) cosh (i (T B (] - E) T)

3.3 Empirical Results

We proceed to estimate transitory and permanent price impacts based on the econometric
approach of Glosten and Harris (1988) as adapted by Sadka (2006). We estimate price impacts for
8,549 stocks from the NYSE and NASDAQ for a single day chosen randomly® in the year 2022
using a sample of ~100 Million Trades. The estimation procedure is conducted at the individual
stock level using intraday transaction data and proceeds in the following steps - (1) modeling price
changes to isolate permanent and transitory effects, and (2) aggregating firm-level estimates to
construct market-wide illiquidity measures. In the first step, trade direction is classified as buyer-
or seller-initiated based on the Lee and Ready (1991) algorithm. Specifically, trades executed above
the prevailing NBBO midpoint are classified as buyer-initiated, those below as seller-initiated, and
trades at the midpoint are excluded. We employ consolidated trade and quote data from the TAQ
database on WRDS, and follow Chordia, Roll, and Subrahmanyam (2000) in using the National
Best Bid and Offer (NBBO) as the reference quote.

[Insert Fig. 1]

Our model characterizes price impacts as linear functional forms (see Glosten and Harris, 1988)
and hence the price impact model assumes that transaction prices are subject to both permanent
(informational) and transitory (non-informational) effects. Let D, € {+1,—1} indicate trade
direction at event time t, where +1 denotes a buyer-initiated trade and -1 a seller-initiated trade,
with V, the corresponding trade size. Let m, denote the market maker’s expectation of the

security’s fundamental value at time t. We specify the evolution of this value given as
me =my_q + C(De — Eryg [De]) + A(DeVe — Eeoq [DeVel + y¢

where C is the fixed permanent component of price impact, A is the variable permanent component
(per share traded), and y; is a public information shock. This formulation captures for the

unexpected order flow, adjusting for autocorrelation using a five-lag AR process given as
5

DtVt = 0(0 + Z ath_th_j + 6t
j=1

Assuming e,~ N(0,02), the expected trade direction can be given as

2
7 If we take Aﬂi(}_ = KZZj, the above expression simplifies into  {j = ;@%({k‘l — 20 + (rs1)

[

8 The date chosen by us is September 1%, 2022 and we estimate the price impact for all stocks on this particular day
of the year.



E,4[D] = 1-2¢ (—_Et‘lwtm),
O-E

Where ¢(.) denotes the cumulative standard normal distribution. Next, observed transaction

prices p; are assumed to reflect transitory costs ¢ and [ where { represents the fixed transitory

price impact and [ is the variable transitory component impact per share. Taking first differences

and substituting the components, we estimate

Apy = C(Dy — Er—1[De]) + A(DeVy — E¢—1[DeVe]) + (D¢ + £ DV + 1y

With 1, a composite error term incorporating both pricing errors and microstructure noise. This
regression is estimated for each stock using OLS, with corrections for serial correlation in the error
term.

[Insert Table 1]

4. Stochastic Control in Dynamic Execution

Let us now proceed to consider a more generalized case of the previous section. Take an informed
trader’s initial position over the time interval [0, T] modelled by the process q;, Vt € [0, T] with the
dynamics given by q'(t) = dq; = v,dt. Here, v, represents the trading velocity which in our case is
deterministic. The aim of this control problem is to find a solution that maximizes an objective
function by altering the control variable. Hence, the number of shares available at each time period
is modelled as a function of the trade velocity and time’.

Now, we model the price of the stock as a stochastic process given by dS; = ddW; + k v, dt such
that the price (i.e. the midpoint of the spread) is a function of the trading velocity as well as a
Weiner process with the parameter k given by the permanent price impact of the trade. It’s
important to note here that the actual execution cost may/may not be a linear function of only the
trader’s volume but could also be related with the existing market volume of other agents as well.
Hence, the market volume process V¢,V t € [0,T] may be taken to be a deterministic continuous
process which is bounded. The execution price may be directly dependent on the transaction
volume and inversely dependent on the market volume, a argument that is not just logical but
practical (see Gueant, 2016) . This results in the execution price being modelled by

1%
St’=5t+g(7t>, g(0) =0
t

9. It may now be fair to discuss the three important conditions that need to be met for any control to be admissible-
First, the control variable v, must be progressively measurable. In other words, a decision made at time t is only
possible with information available until till such a time. Second, such a process must also satisfy an unwinding

constraint s. t fOT vedt = —qq. Such a condition may be logical as the trader must completely liquidate their position
by the end of their trading endeavor. Since the initial holding is given as qq, g¢ = qo + fOT vydt and at time t = T, the

condition of g; at time ¢ = T may be zero shares.Last, process must also be bounded by the trading volume so it may
not be possible to liquidate an unjustifiably large position of shares at any given point in time.



[Insert Fig. 2]

Consider that the informed trader executes a small position of q'(t) = v, at an execution price of
S¢, then his signed profit (negative for buying shares as one may pay to buy and get paid to sell)
as a function of the trade velocity can be expressed as

For a total of N shares, the execution cost may be given by the function L(N) = Ng(N),L(0) = 0.

(43
L : dXt = — St + g (i) Utdt

or

In other words,

1%
L:dX, = —S,v,dt —V, L (7t> dt
t

For a more practical scenario, we may choose for L, a strictly convex power function somewhat
like L(x) = nlx|***, k > 0, but for the standard Almgren-Chriss framework, we choose L(x) = nx2.
To solve this, consider CARA function, a form that could be represented by U = E[— exp(yX7)]
where gamma is the absolute risk aversion coefficient. We now consider a case where the
admissible control uses a deterministic strategy'’. Now, to derive the optimal solution'' for such

an optimization problem, first we have the trader’s deterministic profit given by x = [ dX,

T T T vy
0 0 0 Vt

k 5 T T v,
XT=X0+ qoso__qo‘l'o-f qtth_ f LV(_)dt
2 0 0 Vt

Considering the tradet’s profits are normally distributed”, the expected value and variance of the
cashflows are given by

T
V[Xr] = azf q?dt
0

kqj T v
E[X;] = Xo + qoSe — 10 _ f Vel (—t) dt
2, v,
What may be important here is to understand that the final term in the expected value corresponds

to the dynamic order execution costs which in the AC framework are modelled by the transitory

9 One may argue that the execution strategy which is optimal may not necessarily be deterministic but could be
stochastic as well. We completely agree to such an argument but on a deeper examination, it may be possible to
show that such a strategy is in fact deterministic as well optimal (see Gueant, 2016)

" One must remember the fact that dS; = adW; + k v,dt has the solution -
t
St =Sg+aW, +k f vedt = So + oW, — q¢
0
Hence, we may apply the same in the integral to obtain our result.

12 We again agree that this may be a heavy assumption but for the sake of simplicity and demonstration it may be
important to consider such a assumption for the results obtained hold a strong intuition.



price impacts. Gueant (2016) shows that such a problem may be given by a Hamiltonian system
shown by

p'(t) = yolq*(t)
q*'(t) = V:H'(p(D))
q*(0) = qq
q*(T)=0

In the case of quadratic execution costs, we consider a quadratic function L(p) = np? then from

2
the Hamiltonian system, we have H(p) = Z_n 13 or the system reduces to the form of

p'(t) = ya?q*(t)
! _ Vt
q* (t) —ﬁp(t)

q(0) = qo
q (T)=0

If (V;); is assumed as constant, (i.e. V; =V ,Vt € [0,T]) , then we obtain q*(t) as the classic

90 sinh( /% (T — t))

2
sinh( Yo VT)

result given by

q"(t) =

2n

With the trade velocity expressed as

o’V a?V
qo y2n cosh( YZTI (T—t))

. yo2V
smh( 20 T)

q"' ()= -

[Insert Fig. 3]

An important consideration in the context of optimal execution strategies is the convexity of the
unwinding process, denoted as q*, which implies that the liquidation process is initially fast but
progressively decelerates. Within such a framework, the trader can afford to trade aggressively in
the early stages of execution, as this reduces market impact when the position is large. However,
as liquidation continues and the position diminishes, the cost of further trade becomes increasingly
sensitive to risk aversion, as the trader approaches the end of the liquidation horizon and secks to
avoid drastic price deviations. As the remaining position decreases, the risk aversion component
grows in importance, and the trader becomes more cautious. The cost of trading aggressively
towards the end of the execution period rises due to the heightened volatility associated with a

13 H is the Legendre-Fenchel transform of the function L given as H(p) = sup pp — L(p). It can be shown that since

L is strictly convex, such a Hamiltonian system can be deemed to be as correct.



smaller position and greater market impact. Hence, the trader adjusts the execution schedule to
slow down, minimizing the potential for significant price deviations in the final stages of the trade.
However, we show in the subsequent section that it may be very important for the informed trader
to consider the market maket’s learning process'* in case his strategy is purely speculative”®. Hence,
for all practical scenarios, if a market maker were to conjecture such a strategy used by an informed
trader, she would set the price to increase the informed trader’s price impact.

5. Optimal Liquidation under Asymmetric Information

We now proceed to show the audience how the Kyle (1985) framework fits in the results derived
by us although the purpose of such analysis conducted was different from that intended to. We
extend the canonical Kyle model to a finite horizon with risk-averse agents and time-varying
impact. To show this, we now consider a discrete-time market with trading periods indexed by
t =1,..,T. There is a security with terminal asset value v~ N(u, 6:2) and three rational profit
maximizing agents namely (i) informed trader who has private information about the fundamental
value of the asset and intends to trade over a finite horizon T, (ii) noise traders who submit random
orders u;~N(0,2) and are modelled as i.i.d ; and (iii) a risk averse market maker. The market
maker observes the total order flow Y, = x; + U, consisting of both the informed and uninformed
trader’s demand schedules. The informed trader conjectures that the market maker follows a linear
price adjustment rule given by py = po + A;y¢ + . Foreacht € T, the informed trader submits
a demand schedule g, and subsequently noise traders a schedule u; while the market maker
observes the total order flow. The aim of the informed trader in this model also remains the same
— Maximize profits while minimizing transaction costs for we consider his intentions to be
speculative in nature. He may also want to reduce the risk of variance between the execution price
and the fundamental value. Hence, the informed trader’s profit maximizing objective function is

given as max|[E [r;] — yVar(m,)] where x; is the number of shares liquidated (which in our case
Xt

is for a sell program) at time t. The market maker now sets the price p; as the conditional
expectation of the fundamental value based on the information set observed at time t. Hence,
pe = E[vly]l = po+ Ay + 1 . However, this time the market maker conjectures that the
informed trader trades linearly in the divergence from the price from its fundamental value, i.e. his
trading strategy is of the form x; = B;(Vy — py—1) where B is his trading intensity in petiod # In
such a given strategy, it may be possible to show that the price impact of the informed trade
schedule may not be constant but one that increases with time and is in fact given by

B ¢ t-1

P sk’ L T
B?Zye-1 + oF

, where Z;_y = Var(v|y,, ..., y¢—1)is the uncertainty about fundamental value v after period t — 1.
This means that as and when the informed trader trades, he risks leaking information to the market

14 Although in the real world as and when an informed trader trades, he keeps revealing his information to the market
participants and in such an endeavor, the market maker trades in a fashion to limit the informed trader’s liquidation
process thereby acting as a brake to it.

15 Yes, there exist cases where the trader trades for reasons not pertaining to speculation for example portfolio
rebalancing or liquidity provisions. In all such (other) scenarios, it may not be the most important consideration for
the informed trader (which in our case in not truly informed now for his intentions are non-speculative (see Glosten
and Milgrom , 1985) in nature to track the signaling process of the market maker.



maker and revealing his identity as well as intentions. Let us solve this problem backwards from
the terminal condition all the way till time t = 0. Consider at time t =T, the informed trader
liquidates his shares giving him the profit my = x7(vy — pr—1) . The market maker observes an
order flow yr = xr +ur . Let us define the information gap at time t =T as gr =v —pr_q ,
because the noise uy has mean zero, the insider’s expected profit at time T is given as

E(mr) = xr(gr — Arxr)

The informed trader’s problem is now finding a demand schedule x7 such that the expected value
of his profit can be maximized as well as variance of the profit minimized. Hence the informed

trader’s objective now becomes
2.2 2
rr)l(f}lx ((XT(QT—1 — Arxp) — YATxTUu)

In a more realistic situation, the market maker widens the spread to increase the price impact of
the informed trader (see, for example Easley and O’Hara , 1997) . Taking a first order condition,

X7 yields
XF = gr
L2 +yARod)
and
1
Br

= 200+ v2o2)

Notice that if y = 0 (risk-neutral), 7 = i and if y > 0, fr has a smaller value meaning the trader
T

limits his variance exposure and is less aggressive. For time t = 1,...,T — 1, we conjecture that the
insidet’s value function is quadratic in the gap g, = v, — p;—1 i.e. Vi(g,) = A, g¢ with A, to be
determined. The Bellman equation for the value function can be given as

Vi(ge) = TT;C?X(]E["ﬂEt] —yVar(rrlge) + E[Vir1(gesr 19 xe])

6. Intentionality and Liquidation — The Informed Trader’s Case

We now solve the Bellman equation recursively by working backward from the terminal condition.
At petiod T, the value function V- (g,) = x;(g¢ — Arx7) which is just the profit from trading and
is not dependent on the vatiance of the implementation shortfall'®. Reworking the value function,

we have

+
411 + V104
This can be recursively solved backward to obtain the optimal solution at each time period with

2
9
Vt(gt) = n}?x(xt(gt - Atxt) - y}{%xtzo'i t+1 )>

the parameter A; given by

B ¢ t-1

At B e S
BiZye—1 + of

16 Tt may be just to criticize us for this for we consider a situation where there is no information event that may
contribute to a change in fundamental value of the security but on another note, this case may be considered as a
special case of Easley and O’Hara (1997) where there is an informed trader who trades the difference of the
fundamental value and the market price. But in doing so, he chooses to camouflage his order flow and hence trades
each of the shares at a different time. We assume that during the liquidation process, the fundamental value of the
security remains unchanged for if it were to change, the informed trader was to have knowledge of this (by definition)
and now change his strategy. Hence, there exists a liquidation strategy only if the informed trader is sure of the
mispricing in the security. We consider such an assumption reasonable.



[Insert Fig. 4]

The result is a dynamic equilibrium in which informed traders begin with cautious, information-
concealing trades and gradually accelerate as the trading horizon contracts and the marginal value
of secrecy diminishes. The market maker, in turn, updates prices more aggressively as more
information is revealed through order flow, amplifying the informed trader’s price impact. It is
evident that in equilibrium, the informed trader does not exploit his informational advantage in a
single period. Instead, he strategically disseminates his trades over multiple periods to leverage his
private information and reduce the likelihood of detection by the market maker. This order-
splitting behavior arises from the trade-off between maximizing expected profits and minimizing
adverse price impact. However, as the end of the trading horizon nears, the opportunity to profit
from private information contracts necessitates more aggressive execution. In a single-period Kyle
model, all private information about v (in that period) is partially revealed in that one shot. If 072
is finite and the insider is risk-neutral, some mispricing will remain because the insider does not
want to push the price all the way to her private signal as she faces a price impact cost. The
posterior variance update formula for the market maker may be given Z;; = Z;-1; — 4, Hence,
the magnitude of the market maker’s learning depends on B; as well as 2. When o7 is large, it’s
harder for the market maker to separate informed trades from noise, so learning is slower. It thus
is a very logical argument to conjecture that the informed trader chooses to trade in a scenario
where there is a high probability of noise trading (see Weston, 2001).

Conversely, when f; is large (the insider is more aggressive), more information is conveyed in the
order flow, so posterior variance drops faster. Each time the market maker observes an aggregate
otder flow, she updates her beliefs about v;. This reduces uncertainty about v;. As X, shrinks, the
informational advantage held by the insider is eroded, effectively forcing him to realize a larger
share of his remaining information before they are fully revealed into prices'. In the Kyle (1985)
framework, the informed tradet's central objective is to liquidate a position while minimizing the
extent to which private information is revealed to the market maker, who infers the asset’s
fundamental value from observed order flow. The strategic challenge faced by the informed trader
is thus to execute trades in a manner that does not immediately or excessively signal informational
advantage, as this would prompt the market maker to adjust prices unfavorably. Early aggressive
trading would directly signal private information about the asset’s value, prompting the market
maker to adjust their beliefs and set the price accordingly. By trading more cautiously at the
beginning, the informed trader prevents large price movements and keeps the market maker’s
estimate of the asset value relatively stable. As the liquidation period progresses and the trader's
position nears completion, the concern over signalling diminishes, especially if the time remaining
for unwinding is short. In this context, the informed trader faces diminishing returns from delaying
execution, as the window to manipulate the price without revealing information becomes
narrower. Thus, the trader may accelerate trading towards the end of the liquidation period to
minimize the time required to exit the position, reducing the risk of market impact from
subsequent trades. Additionally, the trader’s concern about preserving secrecy wanes, as any

17 Another interesting feature here is that in equilibrium, since Cov(v,,y;) # 0, the posterior variance is strictly
smaller than the prior.



residual information asymmetry becomes less significant relative to the remaining size of the
position to be liquidated. Unlike the results discussed in the previous section—where price impact
is typically treated as exogenous and time-invariant—this Kyle setting endogenizes market impact
as a function of order flow informativeness. The market maker continuously updates their beliefs,
dynamically adjusting the price impact parameter in response to perceived information leakage. If
the informed trader observes a rising price impact over time, it may signal that the market maker
is successfully inferring their private information. In such scenarios, the trader must adapt by
tempering their trading intensity to reduce further leakage.

7. Conclusion

Our hybrid model thus highlights a fundamental difference which necessitates a reinterpretation
of optimal execution as a problem not merely of cost minimization, but of belief management in
an adversarial inference environment. In cases where the informed trader is certain their
information is not being inferred (e.g., when trading for non-informational reasons such as
portfolio rebalancing), a more aggressive strategy may remain viable. However, when the trader is
acting on genuinely private information—such as knowing the asset is overvalued relative to
fundamentals, the necessity of preserving informational advantage becomes paramount. Under
such conditions, the trader may resort to obfuscation strategies, such as mimicking noise trader
behavior, to disguise their intentions and mitigate the adverse effects of informational leakage.
Thus, the informed trader’s optimal strategy is conditional not only on market microstructure
frictions but also on the purpose of trading and the degree of informational asymmetry. When
trading is motivated by private information, the trader must adopt a cautious, adaptive execution
schedule that balances liquidation efficiency with the risk of detection by an inference-driven
market maker. This assumption in this model is rather very relaxed because this is how the results
seem to point to such behavior. It may be possible to model a more complex dynamic for such
existing scenarios but the intuition behind such an endeavor remains the same. How different
parameter changes affect this model should be an interesting task for future research, but such an
analysis may be reserved for another fruitful day.
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Fig. 1- Distributions of Estimated Price Impacts under the Glosten and Harris (1988) Model.

The violin plot displays the cross-sectional distributions of three key price impact components—permanent variable
(M), transitory variable (v), and permanent fixed ($)—as estimated from firm-level trade data on September 1, 2022.
The impacts are derived from the extended Glosten and Harris (1988) model using TAQ data from NYSE and
NASDAQ stocks. Each distribution reflects heterogeneity in firm-level execution costs, with fat tails and skewness
indicating the presence of large idiosyncratic effects in trade-related price adjustments. All values are winsorized at the
1st and 99th percentiles to mitigate outlier distortion.
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Fig. 2 - Pairwise Relationships among Glosten and Harris (1988) Price Impact Components

The above matrix of scatter plots with fitted linear trends illustrates the empirical correlations between the four

estimated price impact coefficients—transitory fixed (g), transitory variable (1), permanent variable (A), and permanent
fixed ({)—across firm-level data. The analysis is based on NYSE and NASDAQ stocks using TAQ data from
September 1, 2022. The plots reveal interdependencies, including a negative correlation between ¢ and A, suggesting

compensatory roles of fixed and variable permanent components in price discovery. Overall, the weak correlations

involving 7 point to its higher idiosyncratic variation with structural price impact terms.



Execution Trajectories by Price Impact Component
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Fig 3. - Execution Trajectories by Impact Components

The above figure illustrates optimal execution paths under each estimated component of the Glosten and Harris
(1988) price impact model. The trading trajectories are derived under isolated influence of the four distinct impact
coefficients: permanent variable impact (A), transitory fixed impact (¢), transitory variable impact (£), and permanent
fixed impact (C). Each trajectory shows the optimal remaining inventory across 50 discrete trading periods for an
initial position of 40,000 shares, minimizing execution cost based on the respective price impact parameter. The
steeper, convex path under { reflects rapid early liquidation to minimize fixed transitory costs, while the linear
trajectories under A and C indicate uniform execution rates under constant marginal costs. All simulations assume

absence of information asymmetry and zero risk aversion.
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Fig. 4 - Time-Variation in Trading Intensity

The above figute compares the evolution of absolute trading intensity |Bt| and the conditional expectation of
permanent variable price impact E[A,] simulated across 50 discrete trading periods. The left y-axis (red line) shows
the optimal trading intensity derived from minimizing execution costs under dynamic market impact, while the right
y-axis (blue dashed line) reflects the expected value of A; . Such an inverse relationship between |St| and E[A,]
illustrates strategic liquidity timing, where traders decelerate execution when market depth detetiorates. Spikes in E[A,]

signal adverse price impact conditions that discourage aggressive trading.



Tablel - Estimated Price Impacts
Price impacts are estimates of the Glosten and Harris (1988) model
Ap; = C(Dy — E¢—1[De]) + A(DVy — Eey [DeVe]) + (D¢ + 1 D Vi + 1

where Ap, denotes the change in transaction price, D, € {—1,1} indicates buyer- or seller-initiated trades,V; is trade
size and M captures residual microstructure noise and public information events. The coefficients C and A represent
fixed and variable permanent price impacts, while { and € represent fixed and variable transitory components. The
model is estimated using consolidated TAQ data for NYSE and NASDAQ stocks on September 1, 2022. Reported
values are time-series means of stock-level cross-sectional estimates.

Variable Obs. Mean Std. Min Max
C 8,549 0.00 0.01 -0.20 0.33
A(x 10%) 8,549 1.11 71.30 -749.40 913.70
4 8,549 0.02 0.03 -0.17 0.31

£ (x 10°) 8,549 -0.19 55.40 -450.00 427.80




