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Chapter 1

Introduction

This book develops a rigorous yet intuitive framework for understanding sequential Kyle
games, a class of models in financial market microstructure that explain how asymmetric
information affects price formation over time. We begin by reviewing the foundational Kyle
(1985) model, and then progressively introduce extensions involving multi-period settings,
partially informed traders, information leakage, stochastic signals, and Bayesian learning by
market makers.

1.1 Overview

In his book ”Elements of Pure Economics”, Leon Walsrus established the conceptual frame-
work of a general equilibrium. In so far as the investor is concerned, market prices play two
important roles, namely allocation of scarce resources and being vehicles of information. It
is today well known that economics equilibrium is a system-wide phenomenon and is not
isolated to individual markets.Arrow and Debreu (1954) provided the first conceptual proof
of the existence of a general equilibrium. Later, as it were to be, Debreu(1959) werre to
present the classic Arrow-Debrew framework with not just unparalleled mathematical rigour
but with clarity and generality.

What was revolutionary was the 1980 paper by Sanford Grossman and Joseph Stiglitz ”On
the Impossibility of Informationally Efficient Markets” . This challenged the fundamental
assumption of costless, symmetric information in the Arrow-Debreu general equilibrium and
showed how incorporating the cost of information may lead to profound paradoxes. Formally,
they proved a fundamental impossibility theorem which states that ”perfectly informationally
efficient markets are impossible if information is costly to acquire”. Hence, they introduced
the concept of a Rational Expectations Equilibrium. A Rational Expectations Equilibrium
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is a state in which, once all market participants have observed the equilibrium price p∗, no
one has an incentive to revise their portfolio choice. In this equilibrium, all agents agree that
p∗ is optimal given their information set and that further adjustments would not improve
expected payoff.This directly contrasts with a Walrasian equilibrium: a price decline not
only clears markets (the Walrasian effect) but also reduces perceived fundamental value (the
REE effect).1

1.2 Financial Market Equilibrium

To illustrate this paradox, let’s consider a representative agent endowed with I shares of a
risky asset and If units of a risk-free asset. The risk-free asset yields a gross return 1 + rf ,
while the risky asset pays a random payoff F at time T . If the agent demands X units of
the risky asset at price p, then initial wealth at t = 0 is

W0 = I p + If . (1.1)

At time T , terminal wealth is

Wt = (X + I) F +
(
If −Xp

)
(1 + rf ). (1)

The agent maximizes expected utility U(Wt) of terminal wealth, with U ′(Wt) = dU
dWt

. The
first-order condition for optimal demand X is

E
[
U ′(w) (F − p (1 + rf ))

]
= 0.

Using E[AB] = E[A]E[B] + Cov(A, B) and Stein’s lemma yields

E
[
U ′(w)

]
E
[
F − p (1 + rf )

]
+ E

[
U ′′(w)

]
(I + X) Var(F ) = 0. (2)

Rearranging (2) gives the equilibrium price:

p = 1
1 + rf

(
E
[
U ′′(w)

]
(I + X) Var(F )

E
[
U ′(w)

] + E[F ]
)

. (3)

Under CARA utility U(Wt) = −e−A Wt , one has U ′(Wt) = −A U(Wt) and U ′′(Wt) =

1Kyle (1989) introduced imperfect competition among informed traders, demonstrating that prices reveal at
most half of their private information, so even risk-neutral informed agents trade less aggressively and an
REE exists.
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A2U(Wt), so (3) simplifies to

p = 1
1 + rf

(
A (I + X) Var(F ) + E[F ]

)
. (4)

Thus the risky asset’s price equals the discounted expected payoff plus a risk premium
proportional to position size and risk aversion. Consequently, the expected gross return
satisfies

E[r] = rf + A (I + X) Var(F )
p

. (5)

1.2.1 Capital Asset Pricing Model

In the case of multiple risky assets, we can now derive the CAPM smoothly (see Sharpe,
1964). Starting from (3), a slightly modified and generalized version reads

pi = 1
1 + rf

[
E[Fi] +

E
[
U ′′(w)

]
E
[
U ′(w)

] Cov
(
w, Fi

)]
. (6)

Hence the expected gross return on asset i satisfies

E[Ri] = rf −
E
[
U ′′(w)

]
E
[
U ′(w)

] Cov
(
w, ri

)
. (7)

Consider the market portfolio M , whose price is pM = ∑
i piXi and whose return is RM .

Define the value-weights
wi = piXi

pM
.

Weight-averaging (7) gives

∑
i

wi E[Ri] =
∑

i

wi

(
rf − E[U ′′(w)]

E[U ′(w)] Cov(w, ri)
)

(8)

E[RM ]− rf = −E[U ′′(w)]
E[U ′(w)]

∑
i

wi Cov(w, ri) = −E[U ′′(w)]
E[U ′(w)] Cov(w, RM ). (9)

Under the CARA specification U(w) = −e−Aw, one shows that E[U ′′(w)]
E[U ′(w)] = A, and noting

that Cov(w, RM ) = p−1
M Var(RM ) pM yields, after substitution into (7),

E[Ri]− rf = Cov(Ri, RM )
Var(RM )

[
E[RM ]− rf

]
. (10)

This is precicely the Sharpe–Lintner Capital Asset Pricing Model.

7



Aryan Ayyar Sequential Kyle Games

2

Proposition 1.1 (Representative-agent pricing identity). Let there be a risk-free asset
with gross return Rf = 1 + rf > 0 and a single risky asset with payoff F at date T . A
representative agent with strictly increasing, twice continuously differentiable utility U over
terminal wealth WT holds I initial units of the risky asset, chooses demand X, and faces
price p at t = 0. If F is integrable and Var(F ) <∞, then any competitive equilibrium price
p satisfies

p = 1
Rf

(
E[F ] + E[U ′′(WT )]

E[U ′(WT )] (I + X) Var(F )
)

,

where expectations are taken under the objective probability measure and WT = (X + I)F +(
W0 − pX

)
Rf .

Proof. The first-order condition is E
[
U ′(WT )

(
F − pRf

)]
= 0. Using E[AB] = E[A]E[B] +

Cov(A, B) and Cov
(
U ′(WT ), F

)
= E[U ′′(WT )](I + X) Var(F ) by the law of iterated expec-

tations and linearity of WT in F , one gets

E[U ′(WT )]
(
E[F ]− pRf

)
+ E[U ′′(WT )](I + X) Var(F ) = 0,

which rearranges to the stated identity.

Proposition 1.2 (CARA–Normal specialization and risk premium). Under the conditions
of the previous proposition, suppose U(w) = − exp(−Aw) with A > 0 and F is independent
of W0 with variance Var(F ). Then E[U ′′(WT )]/E[U ′(WT )] = −A and the equilibrium price
satisfies

p = 1
Rf

(
E[F ] − A (I + X) Var(F )

)
,

so the expected gross return on the risky asset obeys

E[R] = E
[

F

p

]
= Rf + A (I + X) Var(F )

p
,

which identifies a positive risk premium proportional to risk aversion, position size, and
payoff variance.

2We must remember that this insight of Arrow and Debreu was under clearly specified and relatively general
conditions. In my opinion, this is arguably the most foundational paper of the concept. This was supported
by Lckinzie (1954)’s independent and nearly coherent work with Arrow and Debreu who reinforced the
possibility of a coherent competitive equilibrium system by specifically focusing on the Gale-Nikaido-Debreu
Lemma. Yes, one may agree that there were significant limitations to the Arrow-Debrew framework, but it
can be shown that the aggregate excess demand function can behave almost arbitrarily (see, Sonnenschein
(1972, 1973), Mantel (1974), Debreu (1974) ). One must also note that the Gale–Nikaido–Debreu Lemma is
a mathematical tool used to prove the existence of a competitve equilibrium. Specifically, it provides the
conditions under which a system of inequalities has a deterministic solution.
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Proof. For CARA, U ′(w) = Ae−Aw and U ′′(w) = −A2e−Aw, hence E[U ′′(WT )]/E[U ′(WT )] =
−A. Substitute into the pricing identity and divide by p to obtain the return expression.

1.3 Asymmetric Information

A classical platform to startoff would be Akerlof (1970). In markets with unobservable
product quality (e.g., used cars), he finds asymmetric information between buyers and
sellers causes adverse selection. Sellers of low-quality goods (”lemons”) drive out high-
quality goods because buyers cannot distinguish quality and only offer average prices.Hence,
under these conditions, markets may unravel entirely or operate at suboptimal equilibria.
Similarly, Stiglitz and Rothschild (1976) discuss formallized screening as a solution to
asymmetric information. Hence, one thing is clear - information asymmetry can cause
pareto inefficiency even in competitive markets. Hence, we move on to consider that not
all agents possess the same information. There seem to be two distinct groups of traders:
risk-averse agents and noise (liquidity) traders. Each agent’s demand is Xi ∈ {XI , XU , XN},
and the population sizes are Ni ∈ {NI , NU , NN}. Noise traders submit x̂ ∼ N (0, σ2

x). There
are no initial endowments and the risk-free rate is normalized to zero. The prior for the
asset’s fundamental value is F̂ ∼ N (F̄ , σ2

F ). Priors represent beliefs before observing new
information; posteriors incorporate private signals via Bayes’ rule. At time t = 0, each agent
receives a noisy signal S ∼ N (F, σ2

s).

Proposition 1.3 (Gaussian conjugate update for a scalar signal). Let the prior for a
scalar fundamental F be F ∼ N (F̄ , σ2

F ), and let a private signal satisfy S | F ∼ N (F, σ2
S),

independent of other randomness. Then the posterior is Gaussian with

E[F | S] = F̄ + σ2
F

σ2
F + σ2

S

(S − F̄ ), Var(F | S) = σ2
F σ2

S

σ2
F + σ2

S

.

Proof. Complete the square in the joint normal density of (F, S) or apply the linear regression
formula E[F | S] = F̄ + Cov(F,S)

Var(S) (S −E[S]) with Cov(F, S) = σ2
F and Var(S) = σ2

F + σ2
S ; the

conditional variance follows from the Schur complement.
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Chapter 2

Dynamic Information Revelation

Classical competitive equilibrium assumes that prices fully reflect all available information,
ensuring informational efficiency. Yet, as Grossman and Stiglitz famously argued, this ideal
cannot be sustained: if markets were perfectly revealing, no investor would have an incentive
to incur the costs of acquiring information, and trade would vanish altogether (? ). This
paradox highlighted the inherent tension between incentives for information acquisition and
the possibility of fully efficient markets.

2.1 Background and Motivation

In response, the market microstructure literature made the trading process itself explicit.
Models such as Glosten and Milgrom demonstrated how order flow can act as a conduit
for private information, and how adverse selection endogenously generates trading costs
and bid–ask spreads even when dealers are risk-neutral and competitive (? ? ). These
quote-driven frameworks explain spreads trade-by-trade, attributing them directly to the
presence of better-informed traders. This then, should naturally raise the question: why
Kyle? Kyle’s (1985) auction-style formulation provides a complementary perspective. Instead
of spreads, it emphasizes linear price impact and endogenous market depth as order-flow-
based measures of illiquidity (? ? ). The framework became a workhorse for analyzing price
discovery under asymmetric information, not only because of its tractability but also because
later extensions preserved the linear structure while introducing stochastic noise-trading
volatility, thereby capturing state-dependent liquidity and the empirically observed links
between volume, volatility, and impact (? ). At its core, Kyle’s contribution was to embed a
strategic, risk-neutral insider into a rational expectations setting with competitive market
makers who observe only aggregate order flow, while noise trading sustains volume and
camouflages informed trades. The resulting equilibrium is linear: prices equal the conditional

11
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expectation of fundamentals given total flow, and the constant price impact parameter
succinctly captures adverse selection.

2.2 Model

We consider a single risky asset whose terminal value v is uncertain. Before trading begins,
this fundamental value v is drawn from a normal distribution with parameters v ∼ N (µ0, σ2

v),
where µ0 ∈ R represents the common prior expectation about the asset’s value and σ2

v > 0
captures the degree of fundamental uncertainty. These parameters are publicly known, i.e.
they reflect the collective assessment of market participants about the asset before any
private information acquisition takes place. The key innovation of Kyle’s framework is the
presence of an informed trader who, unlike other market participants, observes the true
realization of v before trading. This trader essentially possesses perfect information about
the fundamental value, creating a stark information asymmetry. However, this informational
advantage comes with a strategic challenge: how to exploit private knowledge without fully
revealing it through trading behavior. To make informed trading viable, Kyle introduces
noise (liquidity) traders whose order u is distributed as u ∼ N (0, σ2

u), independent of the
fundamental v. These traders represent participants who trade for reasons unrelated to
the asset’s fundamental value, they might be selling to meet liquidity needs, rebalancing
portfolios, or responding to other non-informational motives. Crucially, the parameter
σ2

u > 0 is known to all participants. Noise trading serves three essential functions in the
model. First, it provides camouflage for informed orders: when market makers observe total
order flow, they cannot perfectly distinguish between informed and uninformed components.
Second, it ensures market viability: without noise, any order would immediately reveal
the informed trader’s signal, making information valueless. Third, it creates equilibrium
depth: the presence of noise trading allows for a linear price impact that doesn’t completely
eliminate informed trading profits.

2.2.1 The Linear Equilibrium Ansatz

Competitive, risk-neutral market makers observe only the aggregate order flow y = x + u,
where x is the informed trader’s order. They cannot observe x and u separately—please
note that this observational limitation is crucial for maintaining the information asymmetry
that drives the model. Being competitive, market makers earn zero expected profits in
equilibrium. Being risk-neutral, they set prices to equal their conditional expectation of the
asset’s value given the information available to them. This leads to the semi-strong efficient
pricing condition

P (y) = E[v | y]

12
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This pricing rule reflects rational expectations: market makers use all available information
(the order flow y) to form the best possible estimate of the fundamental value, and they
set the price equal to this estimate. The model seeks a linear equilibrium where strategies
take simple, tractable forms. The parameter β represents the trading intensity or how
aggressively the informed trader responds to deviations of the fundamental from its prior
mean. The parameter λ is the price impact coefficient, or how much prices move in response
to each unit of order flow. The reciprocal 1/λ measures market depth i.e. the order size
needed to move prices by one unit.

2.2.2 The Informed Trader’s Problem

Now we turn to the informed trader’s optimization problem, which embodies the central
tension in the model: the desire to profit from private information versus the concern about
moving prices adversely. The informed trader knows the true value v and conjectures that
market makers will set prices according to P (y) = µ0 + λy with some positive λ. Given this
pricing rule, the trader’s profit from submitting order x is:

π = x(v − P )

= x
(
v − µ0 − λ(x + u)

)
The trader profits x(v − µ0) from the difference between the true value and the prior
expectation, but suffers a cost λx2 from the price impact of their own trade, plus a random
component λxu from the interaction with noise trading. Taking the conditional expectation
given v (so that E[u | v] = 0), we obtain

E[π | v] = x(v − µ0)− λx2

This is a quadratic objective in x. The first term represents the expected gain from trading
on the information advantage, while the second term represents the expected cost of price
impact. The optimal trade balances these forces: trade more when the fundamental deviates
further from the prior mean, but moderate the trade size to avoid excessive price impact.nThe
first-order condition ∂E[π|v]

∂x = 0 yields:

v − µ0 − 2λx = 0

Solving for x gives the insider’s best response:

x(v) = v − µ0
2λ

(2.1)

13
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Proposition 2.1 (Insider best response under linear pricing). Fix a conjectured linear
pricing rule P (y) = µ0 + λ y with λ > 0. Then the insider’s optimal order given v is

x(v) = v − µ0
2λ

,

so in any linear equilibrium one must have β = 1
2λ .

This reveals the key insight: the informed trader’s optimal strategy is indeed linear in the
fundamental, with trading intensity β = 1

2λ . The trader trades more aggressively (higher β)
when price impact is low (low λ), and more conservatively when price impact is high. The
factor of 1

2 emerges from the quadratic nature of the price impact cost—this is the familiar
result from monopolistic pricing where the markup is half the demand slope.

2.2.3 Market Makers and Linear Bayesian Updating

Having established the informed trader’s optimal strategy, we now turn to the market makers’
problem. Market makers must infer the fundamental value from the order flow they observe,
knowing that this flow contains both informed and noise components.
When the informed trader uses the strategy x(v) = β(v − µ0), the total order flow becomes
y = β(v − µ0) + u. This creates a linear relationship between the unobservable fundamental
v and the observable order flow y, contaminated by the noise term u.
Since both v and u are normally distributed and independent, the joint distribution of (v, y)
is bivariate normal. This Gaussian structure allows us to apply the linear projection formula
for conditional expectations. The market makers’ optimal pricing rule is to set the price
equal to the conditional expectation of the fundamental given the observed order flow:

P (y) = E[v | y] = µ0 + λy

To determine the slope coefficient λ, we use the fact that for jointly normal random variables,
the conditional expectation is linear with slope equal to the ratio of covariance to variance:

λ = Cov(v, y)
Var(y)

Under the informed trading strategy y = β(v−µ0)+u, we can compute these moments. The
covariance between v and y is Cov(v, y) = βσ2

v , since u is independent of v. The variance of
the order flow is Var(y) = β2σ2

v + σ2
u, reflecting both the variability induced by informed

trading and the exogenous noise.
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Therefore, the price impact coefficient is:

λ = βσ2
v

β2σ2
v + σ2

u

The equilibrium requires that both the informed trader’s best response and the market
makers’ pricing rule be mutually consistent. We have two equations: β = 1

2λ from the
informed trader’s optimization, and λ = βσ2

v
β2σ2

v+σ2
u

from the market makers’ inference problem.
These two conditions must be satisfied simultaneously.
Substituting the first into the second yields a quadratic equation that can be solved to
obtain the unique positive solution:

β = σu

σv
, λ = σv

2σu

These equilibrium values reveal important economic intuitions. The trading intensity β

increases with noise variance σ2
u and decreases with fundamental variance σ2

v . More noise
provides better camouflage, encouraging more aggressive informed trading. Conversely,
higher fundamental uncertainty makes each unit of information less precise, leading to more
cautious trading.
The price impact λ decreases with noise variance and increases with fundamental variance.
Market depth, measured by 1/λ = 2σu/σv, is higher when there is more noise trading relative
to fundamental uncertainty. This captures the intuitive idea that markets with more noise
trading can absorb informed orders with less price movement.

2.2.4 Price Informativeness and Learning

A crucial question in any model of asymmetric information is how much private information
gets revealed through the trading process. In Kyle’s model, this can be measured by
comparing the prior uncertainty about the fundamental with the posterior uncertainty after
observing the order flow. The posterior variance of the fundamental given the order flow is
calculated using the standard formula for conditional variance in the bivariate normal case

Var(v | y) = σ2
v −

Cov(v, y)2

Var(y)

Substituting the equilibrium values, we find:

Cov(v, y) = βσ2
v = σu

σv
· σ2

v = σuσv

Var(y) = β2σ2
v + σ2

u = σ2
u

σ2
v

· σ2
v + σ2

u = 2σ2
u
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Therefore:
Var(v | y) = σ2

v −
(σuσv)2

2σ2
u

= σ2
v −

σ2
v

2 = σ2
v

2
This remarkable result shows that a single trading round in the Kyle model reveals exactly
half of the prior variance, regardless of the noise level σ2

u. This invariance property is a
distinctive feature of the Kyle equilibrium and reflects the endogenous adjustment of trading
intensity to noise levels.

2.2.5 Profitability and Market Impact

The informed trader’s expected profit provides another lens through which to understand
the equilibrium. From the quadratic optimization problem, the conditional expected profit
given the fundamental realization is:

E[π | v] = (v − µ0)2

4λ

Taking expectations over the fundamental gives the ex ante expected profit

E[π] = E[(v − µ0)2]
4λ

= σ2
v

4λ

The expression reveals that expected profits increase with both fundamental uncertainty
(more valuable information) and noise trading (better camouflage). The profit is proportional
to the geometric mean of the two variance parameters, highlighting the complementary
nature of information value and camouflage. The comparative statics of market depth
deserve special attention. Since λ = σv/(2σu), price impact decreases with noise variance,
while market depth 1/λ = 2σu/σv increases linearly with noise variance. This endogenous
relationship between noise trading and market liquidity is central to understanding how
markets self-organize around information asymmetries.

Matcha with Ayyar

Over a warm cup of matcha, let’s pause and think about something that often confuses
students...

Question: “I keep hearing about different sources of trading costs in market mi-
crostructure models. In the Kyle model, where exactly do these costs come from?
Are they the same as the inventory costs I read about in other papers?”
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Great question! This is actually a subtle but important distinction that gets to the heart of
what drives spreads and price impact in different market structures. In Kyle’s model, the
trading costs arise purely from adverse selection. Here’s what’s happening: the market
makers know that some of the orders they see come from informed traders who know more
about the asset’s true value. This creates a classic “winner’s curse” problem; when market
makers get hit by a large order, it’s more likely to be coming from someone who knows bad
news (if it’s a sell order) or good news (if it’s a buy order). To protect themselves from this
adverse selection, market makers build the expected cost into their pricing. This shows up
as the price impact parameter λ = σv

2σu
, which measures how much the price moves per unit

of order flow. The key insight is that this impact exists even though market makers are
risk-neutral and competitive, they’re not worried about holding inventory per se, they’re
worried about being picked off by better-informed traders.

Now, inventory costs are a different animal entirely. They arise when market makers are
risk-averse and worry about the risk of holding positions. Consider a dealer with CARA
utility U(w) = − exp(−γw) who holds inventory q. Their certainty equivalent from this
position is

CE = q(µ0 − P )− γ

2 q2σ2
v

That second term γ
2 q2σ2

v is pure inventory cost. It increases quadratically with position size
and reflects the dealer’s aversion to bearing risk. Crucially, this cost exists even if there’s no
asymmetric information at all! The beauty of Kyle’s framework is that it isolates the adverse
selection channel cleanly. The risk-neutral assumption strips away inventory concerns,
leaving us with a pure laboratory to study how private information gets impounded into
prices through strategic trading. In real markets, of course, both effects are likely present,
but understanding them separately is crucial for empirical work that tries to decompose
bid-ask spreads into their components.
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The single-period Kyle model elegantly captures how informed trading, market making, and
noise provision interact to incorporate private information into prices. Yet real markets
are dynamic: information arrives over time, traders adapt their strategies, and strategic
interactions evolve. Extending Kyle’s framework to multiple periods transforms a static
snapshot into a dynamic theory of information-based price discovery. Kyle himself introduced
the multi-period extension in his 1985 Econometrica paper, showing that the insider’s
problem becomes one of dynamic programming: current profits must be balanced against
the information revealed to market makers, which alters future opportunities. This temporal
trade-off introduces genuine intertemporal strategy—far more than a repetition of the
single-period game. Kyle’s discrete-time formulation demonstrated linear equilibria through
recursive difference equations.

2.3 Multiperiod Kyle

The breakthrough came with Back (1992), who proved that as trading intervals shrink, the
discrete model converges to a tractable continuous-time limit. This insight provided the
mathematical foundation for a generation of advances in dynamic microstructure theory.
In continuous time, the Kyle framework has inspired extensive research: multiple insiders,
dynamic information acquisition, stochastic noise volatility, funding constraints, disclosure
requirements, and correlated signals across assets. The unifying theme is that informed
traders manage information intertemporally—trading less aggressively early on to preserve
private information, then accelerating as horizons shorten. The model predicts rich dynamics:
market depth typically increases as the terminal date approaches; price informativeness rises
as uncertainty resolves; and trading intensity follows time-varying patterns shaped by noise,
horizon, and signal precision. Unlike the static case where price impact depends only on
the signal-to-noise ratio, in multi-period settings impact itself becomes a forward-looking
process, influenced by expectations of future order flow and information release. Crucially,
the multi-period Kyle model retains linear equilibrium structure, allowing for closed-form
characterizations despite the dynamic complexity. This combination of tractability and
depth explains why it remains a cornerstone of market microstructure, with implications for
optimal execution, high-frequency trading, and the design of modern electronic markets.

2.4 Model Setup

The multiperiod Kyle model preserves the three-player structure of the single-period version-
informed trader, noise traders, and competitive market makers while introducing intertem-
poral dynamics that fundamentally alter strategy. Its power lies in combining simple
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Gaussian-linear assumptions with dynamic optimization, allowing tractable analysis of how
information gets revealed and prices adjust over time. A finite horizon is assumed, both for
analytical convenience (backward induction via dynamic programming) and for economic
realism: private information often expires (e.g., earnings announcements, merger outcomes,
or patent approvals), creating urgency and shaping trading incentives. The model runs for T

discrete periods, with a risky asset of terminal value v ∼ N (v̄, σ2
v). At time zero, the informed

trader learns the true v, while the market only knows the prior. Each period, the informed
trader chooses an order xt, noise traders submit independent demands ut ∼ N (0, σ2

u), and
market makers observe the total flow yt = xt + ut. Prices update via conditional expectation,
pt = E[v | y1, . . . , yt]. The informed trader’s challenge is dynamic: trading too aggressively
reveals information and reduces future profits, while trading too cautiously underutilizes
the informational advantage. The problem is thus an optimal control problem balancing
immediate gains against preserving information rents across time.

2.4.1 Strategic Interaction

The informed trader solves a dynamic programming problem, choosing the sequence
(x1, . . . , xT ) to maximize expected cumulative profit. Current trades affect both imme-
diate returns and the informativeness of future prices, creating intertemporal externalities.
Optimal strategies typically imply declining trading intensity as the horizon shortens. Noise
traders supply the camouflage that sustains informed trading. Their period-by-period
independent orders represent liquidity needs unrelated to fundamentals, providing the ran-
domness that prevents perfect inference by market makers. Market makers, observing only
aggregate flows, update beliefs using Bayesian inference. Thanks to the Gaussian-linear
structure, this process admits closed-form characterization through Kalman filter recursions.
Prices form a martingale that gradually converges to the true value as information is re-
vealed. The outcome is a dynamic process of price discovery that predicts how market depth,
informativeness, and liquidity evolve over time.

Matcha with Ayyar

Let me pour some matcha and think about what changes when we go dynamic...

Question: ”I understand the one-period Kyle model, but I’m confused about the
multiperiod version. If the informed trader knows v from the beginning, why doesn’t
he just trade his entire position immediately in period 1 to maximize profits?”

Think of it this way: if the informed trader dumps his entire desired position in period 1,
the massive order flow would cause a huge price movement. The market makers, seeing this
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large order, would infer that someone has very strong information about the asset’s value.
This would cause prices to move most of the way to the fundamental value immediately! So
while the trader gets high profits per unit traded in period 1 (since the price hasn’t moved
much yet), he’s ”killed the golden goose”—there’s no information advantage left for periods 2
through T . The optimal strategy involves a delicate balance: trade enough today to capture
some profits, but not so much that you give away all your informational advantage. It’s like
being a poker player who knows everyone’s cards—you want to win money, but if you bet
too aggressively on every hand, everyone will figure out that you’re cheating! This creates a
beautiful dynamic optimization problem where the informed trader is essentially deciding
how fast to reveal his private information to the market.

2.4.2 Price Process and Information Revelation

A central insight of the multiperiod Kyle model is that prices are martingales under the public
filtration generated by order flow. Let Ft = σ(y1, . . . , yt). With competitive, risk–neutral
market makers,

pt = Ex[v | Ft] ⇒ E[pt | Ft−1] = pt−1,

and under linear–Gaussian structure the pricing rule takes the form

pt = pt−1 + λt yt, yt = xt + ut, ut ∼ N (0, σ2
u),

where λt > 0 is the period-t price–impact (inverse depth). The cumulative decomposition

v − v̄ =
T∑

t=1
λt yt + εT

holds with a terminal residual εT that reflects remaining (posterior) uncertainty about v

after T periods. The linear–Gaussian setting implies Kalman–filter updates for the posterior
variance:

σ2
t ≡ Var(v | Ft) = σ2

t−1 −
Cov(v, yt | Ft−1)2

Var(yt | Ft−1) = σ2
t−1

σ2
u

β2
t σ2

t−1 + σ2
u

,

once we specify the insider’s linear strategy xt = βt (v − pt−1). Equivalently, the period-t
information revelation rate is

ρt ≡
σ2

t−1 − σ2
t

σ2
t−1

= β2
t σ2

t−1
β2

t σ2
t−1 + σ2

u

∈ (0, 1),

so σ2
t = σ2

t−1(1− ρt) and hence σ2
T = σ2

v

∏T
t=1(1− ρt).
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2.4.3 The Informed Trader’s Dynamic Problem

Let ∆t ≡ v − pt and Wt(pt, v) be the insider’s continuation value from period t. A single
trade in period t at order xt yields expected one–period profit

Et

[
(v − pt)xt − λtx

2
t − λtxtut

]
= ∆txt − λtx

2
t ,

and pushes the next price via pt+1 = pt + λt(xt + ut), so ∆t+1 = ∆t − λt(xt + ut). With
discount factor δ ∈ (0, 1], the Bellman equation is

Wt(pt, v) = max
xt

Et

[
∆txt − λtx

2
t + δ Wt+1(pt+1, v)

]
.

Proposition 2.2 (Quadratic value function and optimality condition). There exist coeffi-
cients {At, Bt}T +1

t=1 with terminal condition AT +1 = BT +1 = 0 such that

Wt(pt, v) = At ∆2
t + Bt.

Given At+1 and λt, the insider’s period-t optimal order is linear,

x⋆
t = βt ∆t, βt = 2δAt+1λt − 1

2λt
(
1− δAt+1λt

) ,

and the value–function coefficient satisfies the backward recursion

At = 1
4 λt

(
1− δAt+1λt

) .
Moreover, Bt = δBt+1 + δAt+1λ2

t (δAt+1λt−1)
1−δAt+1λt

σ2
u.

Proof. Plug the quadratic ansatz into the Bellman equation; take expectations using E[ut] = 0
and E[u2

t ] = σ2
u; maximize the resulting quadratic in xt. The first–order condition yields the

stated βt. Substituting x⋆
t back gives the recursions for At and Bt.

2.4.4 Market Maker Pricing and Dynamic Consistency

With xt = βt∆t−1, the covariance and variance terms are

Cov(v, yt | Ft−1) = βtσ
2
t−1, Var(yt | Ft−1) = β2

t σ2
t−1 + σ2

u,

hence competitive pricing implies

λt = βtσ
2
t−1

β2
t σ2

t−1 + σ2
u

and pt = pt−1 + λtyt.
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Equations in Proposition 2.2 together with the pricing and variance updates

σ2
t = σ2

t−1
σ2

u

β2
t σ2

t−1 + σ2
u

jointly characterize equilibrium via backward–forward recursion.

2.5 Equilibrium Characterization

Theorem 2.3 (Linear equilibrium: existence, uniqueness, and dynamics). Fix δ ∈ (0, 1],
σ2

v > 0, and σ2
u > 0. There exists a unique linear equilibrium with strategies xt = βt(v−pt−1)

and prices pt = pt−1 + λtyt such that for t = 1, . . . , T :

βt = 2δAt+1λt − 1
2λt (1− δAt+1λt)

, At = 1
4 λt (1− δAt+1λt)

, λt = βtσ
2
t−1

β2
t σ2

t−1 + σ2
u

.

In the canonical case δ = 1 with homoscedastic noise σ2
u and a single insider:

1. Trading intensity is increasing over time: β1 < β2 < · · · < βT .

2. Price impact is decreasing over time: λ1 > λ2 > · · · > λT .

3. Information revelation accelerates: ρ1 < ρ2 < · · · < ρT and ρT = 1
2 .

4. Period-t expected profit is

E[πt] = E
[
∆t−1xt − λtx

2
t

]
= βtσ

2
t−1 σ2

u

β2
t σ2

t−1 + σ2
u

,

so total expected profit is
∑T

t=1 E[πt].

Intuition. Early on, the insider protects future rents (trades cautiously), but the large
residual uncertainty σ2

t−1 makes each unit of order flow less informative, leading to higher
depth (lower λt) later only after enough information is revealed. By the terminal period,
the insider behaves as in a one–shot Kyle game with remaining variance σ2

T −1, revealing
exactly half of that variance.

Matcha with Ayyar

“Why does βt rise over time while λt falls?”

Urgency grows as the horizon shrinks, pushing the insider to trade more aggressively (rising
βt). At the same time, previous trading has already reduced posterior variance, so each
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unit of new order flow is less masked by noise relative to the shrinking uncertainty set.
Market makers therefore need less slope to extract the same information (falling λt), and the
terminal step always reveals half of what remains. The two forces—urgency vs. remaining
uncertainty—jointly generate rising intensity but falling impact.

Two-Period Model (T = 2)

Backward induction yields:

λ2 = σ1
2σu

, β2 = σu

σ1
, σ2

1 = σ2
v

σ2
u

β2
1σ2

v + σ2
u

, λ1 = β1σ2
v

β2
1σ2

v + σ2
u

.

The optimal β1 maximizes E[π1] + E[π2], delivering β2 > β1 and λ2 < λ1. Closed forms
follow from the first–order condition but are omitted for brevity.

Continuous-Time Limit

Let ∆t = 1/T → 0. The discrete model converges to a continuous–time Kyle economy (Back,
1992) in which

dPt = Λ(t) dYt, dYt = β(t) (v − Pt) dt + dUt,

with {Ut} a Brownian motion with variance rate σ2
u. The residual variance σ(t)2 = Var(v | Ft)

solves a Riccati–type ODE, and Λ(t) = 1
2σu

σ(t) while β(t) increases as time to maturity
shrinks.
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Chapter 3

One Ping Only

“Reverify our range to target. ONE
PING only.”

—Captain Marco Ramius

In the frigid depths of the North Atlantic, far from the familiar shores of Murmansk, Kapitan
Marco Ramius faces an existential crisis of navigation and survival. His objective requires
the determination of an exact distance to an unseen adversary, yet he is constrained by the
most rudimentary of instruments: an acoustic wave projected into the abyss, followed by
the harrowing wait for its return. The command for ”one ping only” is not a gesture of
aesthetic restraint or moral virtue; rather, it is a calculated response to the reality that every
acoustic transmission is a hazardous declaration of presence. In the silence of sub-surface
combat, to speak is to be found, yet to remain silent is to remain blind. This fundamental
tension between the necessity of information and the cost of its acquisition provides a precise,
if not immediately obvious, parallel to the modern electronic limit order book. Within
the high-frequency environments that govern global equity trading, a comparable darkness
persists. Institutional participants stand at a structural precipice, requiring a granular
understanding of liquidity depth before committing to large-scale execution. However, the
most vital information, the precise location and volume of hidden reserves, is frequently
concealed behind the ”acoustic silence” of iceberg orders. While the public data feed provides
a superficial rendering of surface depth, beneath this visible layer lies an invisible architecture
of dormant volume that radically alters execution dynamics in ways that traditional, passive
models fail to interpret. This chapter seeks to establish this parallel through the lens of
analogy, moving beyond mere mathematics to explore the philosophy of active measurement.
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3.1 Information as Revelation

We begin by examining the mechanics of sonar, distinguishing between the fragmentary
nature of passive observation and the definitive, albeit risky, certainty of active measurement.
We then explore how tomographic principles allow for the reconstruction of complex internal
structures from a series of simplified echo patterns. By tracing the evolution of the limit
order book as a mechanism for price discovery, we demonstrate that these markets are best
understood as queuing systems defined by a constraint: the majority of the queue remains
hidden from view. Finally, we introduce the core intuition of our framework, proposing
that by transmitting carefully calibrated ”pings”, in the form of discrete probe orders and
analyzing the resulting ”echoes” of execution timing, we can reconstruct the latent depth of
the hidden queue with the same precision that active sonar reveals a submarine. Considering
the epistemological challenge of extracting information from an opaque environment, one
must first appreciate that in both the ocean and the exchange, measurement is not merely an
observation; it is an act of revelation . Sonar, or ”sound navigation and ranging,” serves as the
quintessential technology for navigating media where light is rendered useless by absorption
and scattering . While acoustic waves possess the remarkable capacity to traverse thousands
of kilometers with clarity, this physical advantage is governed by a strict constraint: silence
yields no definitive data . To understand the mechanism of price discovery in an invisible
queue, one must first distinguish between the two primary modes of acoustic interrogation.

3.1.1 Passive Measurement

The paradigm of passive measurement relies entirely upon the interpretation of ambient
acoustic signatures . A sonar operator listens for the discrete artifacts of existence:rhythmic
propeller signatures of distant vessels, the structural groans of hulls under pressure, or
the industrial hum of the seabed. While this method is inherently silent and preserves
the listener’s stealth, the resulting information is fundamentally fragmentary . Signals are
frequently refracted through varying thermal layers or degraded by distance, leaving the
observer to rely on experience and pattern recognition rather than empirical certainty . In
the context of the market, this is analogous to the trader who watches the public tape,
attempting to infer hidden liquidity from the ”noise” of visible trades without ever testing
the depth themselves.

3.1.2 Active Alternative

In contrast, active measurement represents a decisive transition from inference to interro-
gation. Here, the observer actively projects a pulse of acoustic energy into the darkness
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and awaits its reflection. Should an object reside at range r, the pulse will reflect off the
surface and return to the transmitter. Utilizing the known speed of sound in water, c ≈ 1500
meters per second, and the observed round-trip latency τ , the distance is derived through a
mathematically unambiguous identity:r = cτ

2 . While this direct measurement eliminates the
ambiguity of passive listening, it imposes a significant cost: the outgoing signal serves as a
beacon, announcing the observer’s presence and tactical intentions to the entire surrounding
medium. In the naval theater, as in the limit order book, active measurement is an act
of commitment. When the captain chooses to ”ping,” they are conceding the advantage
of stealth in exchange for the absolute certainty of the target’s position. This tactical
trade-off, the exposure of one’s own position for the sake of uncovering the adversary’s, is
the foundational logic of the probe-based execution strategies we develop hereafter. The
utility of active measurement extends far beyond the determination of simple distance; it
provides the raw data necessary to reconstruct hidden internal architectures . This principle
is most clearly demonstrated in the field of medical imaging through computed tomography
(CT). A CT scanner does not rely on a single perspective; instead, it projects a multitude
of X-ray beams through a patient’s body from a variety of angles . Each ray is absorbed
at a different rate, contingent upon the integrated density of the tissue along its specific
trajectory. While no single measurement reveals the entirety of the internal landscape, the
collection of these one-dimensional observations allows for the mathematical inversion of the
system, ultimately reconstructing a complete three-dimensional representation of structures
that remain invisible to the naked eye . The fundamental catalyst for this reconstruction
is the principle of conservation. When a ray of energy passes through a cross-section, its
total absorption is the sum of the densities it encountered . By varying the angle of the
”pings”—or in our case, the timing and placement of probe orders—the resulting pattern
of reflections creates an overdetermined system . Just as modern active sonar can synthe-
size multiple echoes to generate a detailed acoustic image of canyons and ridges on the
ocean floor, our tomographic framework utilizes the ”echoes” of execution timing to map
the dormant volume of the limit order book . The key to this precision is variation: by
introducing structured differences in measurement, we can combine fragmentary reflections
into a singular, high-fidelity model of hidden liquidity.

3.2 Limit Order Books

The application of sonar principles to the financial landscape requires a foundational under-
standing of the structural evolution of market mechanisms and the subsequent emergence of
the queue-theoretic paradigm. For the vast majority of financial history, the intersection
of buyer and seller was mediated through human agency— specifically, a specialist or mar-
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ket maker standing upon a physical exchange floor who facilitated transactions through a
combination of voice negotiation and hand signals. This manual era, exemplified by the
late-twentieth-century New York Stock Exchange, relied on a specialist who maintained
order books on physical media, such as paper ledgers or chalkboards, matching orders
through informal convention and personal discretion. Such a process was constrained by
the inherent biological limitations of human information processing and the deliberate
asymmetric visibility of the specialist, who possessed the exclusive right to view the full
depth of market interest without any obligation to disclose that structure to the public.

3.2.1 The Electronic Limit Order Book

The migration toward electronic markets fundamentally deconstructed this manual interme-
diary model, replacing human intuition with the rigid, sensor-driven logic of digital networks.
Beginning with the introduction of electronic communication networks (ECNs) in the 1970s
and accelerating with the expansion of the NASDAQ, the marketplace transformed into a
limit order book: a sophisticated data structure that maintains an active queue of unfilled
limit orders. In this environment, orders are not negotiated but sorted via the protocol of
Price-Time Priority (PTP), which places the highest-priority orders at the vanguard of the
queue. When a market order is deployed, it acts as a kinetic force that executes against
these standing limit orders in strict sequence, depleting the queue as it progresses through
the price levels. This transition from physical floor to digital ledger revealed a profound
structural isomorphism: the problem of order execution in a high-frequency environment is
mathematically identical to the classical queuing problems studied in operations research.
For the institutional participant, the limit order book presents a binary tactical choice:
the trader may either utilize a market order to achieve immediate execution at the cost of
paying the spread, or submit a limit order to occupy a position within the queue. The latter
strategy, while avoiding the immediate cost of the spread, introduces a stochastic wait time
that is dictated by the arrival rate of market orders, the frequency of order cancellations,
and the potential for new limit orders to ”cut ahead” as price regimes shift . Consequently,
the ability to execute successfully becomes a function of understanding the discipline of the
queue—a discipline that remains robust in its First-In-First-Out (FIFO) nature, even as the
volume within it becomes increasingly obscured

3.3 Stochastic Queue Theory

The formalization of order execution dynamics necessitates a transition from simple arithmetic
to the rigorous framework of stochastic processes. Within this paradigm, the electronic limit
order book is most elegantly modeled as an M/M/1 queuing system. In this environment, the
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arrival of market orders, i.e. the ”service” events is characterized as a Poisson process with
an intensity rate of λM 2. Conversely, the departure of liquidity through order cancellations
occurs at a rate defined by λC3. The state of the system is defined by the queue depth Q,
which serves as the primary determinant for the temporal dimension of execution4.

Proposition 3.1. Under the assumption of locally stationary Poisson arrival and cancella-
tion rates, the expected execution latency E[τ ] for an order positioned at depth Q is given by
the identity

E[τ ] = Q

λM + λC

where the denominator represents the aggregate depletion intensity of the price level.

Traders have historically understood this relationship through intuition: a deeper queue
necessitates a longer duration for service, whereas an acceleration in market activity facilitates
a more rapid fill. However, this transparent model is predicated on the assumption that
Q is fully observable, paradoxically an assumption that modern market microstructure
systematically violates.

3.3.1 An Invisible Queue

The structural integrity of the simple M/M/1 model is compromised by the strategic use of
iceberg orders. An iceberg order functions as a mechanism for concealment, where the vast
majority of a participant’s volume remains hidden from the public data feed, leaving only
a nominal ”visible portion” to be displayed. As the matching engine depletes this visible
fraction, the exchange automatically replenishes it from the hidden reserve, creating the
illusion of a shallow queue while maintaining a substantial, invisible barrier.This concealment
is a rational response to the risk of information leakage. The public disclosure of a large
institutional position invites adverse selection; savvy market participants can infer inventory
pressure and adjust their pricing strategies accordingly, thereby widening spreads and
inflating execution costs. While icebergs successfully mitigate this leakage, they introduce
a fundamental opacity into the market’s state variables. The true queue depth Qtrue that
dictates actual execution duration is no longer equivalent to the visible depth Qvisible reported
by the exchange.

Remark 3.2. The discrepancy between visible and true depth can be formalized as:

Qtrue = Qvisible + H

where H ≥ 0 denotes the latent volume. Consequently, a naive estimator of execution time,
τ̂naive, will systematically underestimate the true latency τtrue by a factor of (1 + H/Qvisible).
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For execution algorithms such as TWAP or VWAP, this bias is catastrophic, leading to a
profound underestimation of execution risk and a subsequent increase in implementation
shortfall.

3.3.2 Order Book Tomography

To resolve this informational deficit, we return to the sonar analogy: just as a naval operator
interrogates the darkness of the Atlantic to determine the range of a target, a trader must
interrogate the limit order book to determine the true depth of the queue. This active
measurement relies on the strict FIFO discipline that governs electronic exchanges. In this
environment, a unit-sized limit order P1 submitted at time t1 serves as the initial ”ping”. As
it joins the end of the visible queue, it initiates a measurement cycle that concludes at time
T1—the moment of the order’s execution. However, a single pulse provides only a localized
snapshot. To reconstruct the architecture of the queue, we deploy a second probe, P2, at
time t2 = t1 + δ. During the controlled interval δ, the queue evolves: new visible orders
arrive, existing orders are cancelled, and hidden icebergs may be injected. When P2 executes
at time T2, the resulting execution interval T2 − T1 encodes the cumulative evolution of the
queue. By invoking the Conservation Principle, we assert that the total volume removed
from the queue between the two execution timestamps must equal the sum of the visible
arrivals and the hidden components that stood between the probes25. Since the market
tape provides an explicit record of every trade and cancellation between T1 and T2, the total
depletion is an observable fact26. By subtracting the observable visible arrivals from this
total depletion, we successfully isolate the hidden volume H, transforming market darkness
into precise, actionable knowledge.
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3.4 Theoretical Foundation

We formalize the limit order book (henceforth LOB) dynamics under the assumption of
a Price-Time Priority matching engine, where orders at a given price level are executed
according to a First-In-First-Out discipline.

3.4.1 Queue Geometry Mechanics

The state of the queue at price p and time t, denoted by Q(t, p), evolves as a stochastic
process driven by the interplay of liquidity provision as well as consumption. Specifically,
the queue length is governed by the net aggregate of limit order arrivals, market order
executions, and cancellations, given by

Q(t, p) =
∑

i

vL
i I{tL

i ≤t} −
∑

j

vM
j I{tM

j ≤t} −
∑

k

vC
k I{tC

k
≤t} (3.1)

where vL
i , vM

j , and vC
k represent the volumes of the i-th limit order, j-th market order, and

k-th cancellation, respectively. Under PTP, the queue position is the primary determinant
of execution quality. An order’s position governs its execution probability, as front-of-queue
orders are filled prior to those at the back; it dictates adverse selection risk, as orders
deeper in the queue are more exposed to toxic flow and ”picking-off” risks; and it defines
the expected fill rate, directly impacting the opportunity cost of waiting. Crucially, the
observable queue Qvisible(t, p) reported by market data feeds is often a strict subset of the
true liquidity available. The true queue depth Qtrue(t, p) accounts for hidden liquidity,
commonly referred to as ”iceberg” or reserve orders, such that:

Qtrue(t, p) = Qvisible(t, p) + H(t, p) (3.2)

where H(t, p) ≥ 0 represents the latent volume concealed from the public tape. To estimate
this latent component, we introduce a probe-based active inference mechanism. First, we
submit two sequential limit orders, P1 and P2, both of unit quantity, at the best bid(resp.
ask) price p. P1 is submitted at t = 0, and P2 is submitted after a deterministic latency δ,
at t = δ. Between the submission of P1 and P2, the visible queue expands due to new limit
order arrivals. We define the Gap Volume, Vgap, as the cumulative visible volume added
to the queue during the interval [0, δ]. Consequently, the true distance between the queue
positions of P1 and P2, denoted q1 and q2, is the sum of the visible gap volume and the
unknown hidden volume accumulated in that interval:

q2 − q1 = Vgap + Hgap (3.3)
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where Hgap is the hidden volume added between the probes. The core objective of the
Multidimensional Latency Tomography algorithm is to recover Hgap by analyzing the
differential execution times of P1 and P2.

3.4.2 Multidimensional Intensity Framework

We model the order flow as a multivariate point process Nt = (NL
t , NC

t , NM
t ), representing

the counting processes for limit orders, cancellations, and market orders, respectively. The
dynamics of these processes are characterized by their conditional execution intensities λ(t),
defined as the expected arrival rate conditioned on the filtration Ft of market history:

λX(t) = lim
∆t→0

E[NX
t+∆t −NX

t | Ft]
∆t

, X ∈ {L, C, M} (3.4)

Following the microstructure models of Cont et al. (2010) and Bacry et al. (2015), we
specify these intensities using a Hawkes process framework to capture the self-exciting and
cross-exciting nature of order book events. The intensity for event type i is given by a
baseline intensity µi augmented by a convolution of past events with an excitation kernel
ϕij :

λi(t) = µi +
∑

j

∫ t

0
ϕij(t− s)dNj(s) (3.5)

For computational tractability, we employ an exponential decay kernel ϕij(u) = αije−βiju,
which allows for efficient recursive estimation of the intensities. The effective rate of queue
depletion, which drives the execution of our probe orders, is the aggregate intensity of
volume-removing events:

λdepletion(t) = λM (t) + λC(t) (3.6)

3.4.3 Conservation and Tomography

The theoretical anchor of the MDLT algorithm is a conservation law relating observable
time intervals to latent volume. Let T1 and T2 denote the execution times of probes P1

and P2, respectively. Since P2 cannot execute until all orders preceding it, both visible and
hidden have been removed, the total volume depleted from the queue during the interval
[T1, T2] must exactly equal the volume standing between P1 and P2. We define the Observed
Depletion, Dobs, as the cumulative volume of market orders and cancellations recorded on
the public tape at price p between T1 and T2. This yields the fundamental conservation
equation:
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Dobs =
∫ T2

T1
(dMt + dCt) = Vgap + Hgap (3.7)

rearranging this identity allows us to solve for the unobservable hidden volume Hgap in
closed form:

Hgap = Dobs − Vgap (3.8)

From this, we derive the Iceberg Density Coefficient, ρ, which quantifies the ratio of hidden
to visible liquidity in the local order book:

ρ = Hgap

Vgap
= Dobs

Vgap
− 1 (3.9)

A value of ρ ≈ 0 indicates a transparent order book, while ρ > 0 signals the presence of
iceberg orders. This coefficient is then used to construct the MDLT Priority Metric, QMDLT ,
a rigorous estimate of the true effective queue position facing a new limit order:

QMDLT (t) = Qvisible(t) · (1 + ρ̄t) (3.10)

where ρ̄t is an exponentially weighted moving average of the iceberg density, smoothing
out microstructure noise. This metric provides a corrected input for optimal execution
algorithms, replacing the naive Qvisible with a latency-adjusted measure of queue priority.

3.4.4 Probe Order Placement

To actively interrogate the queue structure, we employ a differential latency measurement
technique using paired probe orders. Let the current time be t0. We define a probe pair as a
sequence of two limit orders, denoted P1 and P2, submitted to the same side of the book
(e.g., best bid) with identical unit quantity size sp = 1. The submission mechanism follows a
strict temporal discipline:

1. Probe P1: Submitted at time t1 = t0. Upon acceptance by the matching engine, it is
assigned a queue position q1 = Qtrue(t1, p) + 1.

2. Probe P2: Submitted at time t2 = t0 + δ, where δ > 0 is a deterministic inter-arrival
gap. Upon acceptance, it is assigned a queue position q2 = Qtrue(t2, p) + 1.

During the interval (t1, t2], the queue dynamics continue to evolve. New limit orders may
arrive, adding to the visible depth, while hidden orders (icebergs) may also be injected into
the queue. We define the Visible Gap Volume, Vgap, as the cumulative size of all visible limit
orders arriving at price p between the two probe submissions:

33



Aryan Ayyar Sequential Kyle Games

Vgap =
∑

k

vL
k · I{t1<tL

k
≤t2} (3.11)

Similarly, let Hgap denote the unobservable hidden volume arriving during this same interval.
The fundamental geometric relationship between the queue positions of the two probes is
thus:

q2 − q1 = Vgap + Hgap (3.12)

This equation establishes that the ”distance” between our probes in the execution queue
is strictly equal to the sum of visible and hidden liquidity added during the inter-arrival
latency δ.

3.4.5 Iceberg Density Ratio

We invoke the principle of volume conservation to derive the hidden liquidity parameters.
Let T1 and T2 denote the stochastic execution timestamps of probes P1 and P2, respectively.
Under the assumption of a FIFO matching algorithm, P2 executes only after all orders
preceding it in the queue have been depleted. Therefore, the total volume removed from the
book between T1 and T2 must exactly match the queue volume standing between the two
probes. We define the Observed Depletion, Dobs, as the integral of the order flow depletion
rate (market orders and cancellations) over the execution interval [T1, T2]. Since market data
feeds report these trades and cancellations explicitly, Dobs is a fully observable quantity:

Dobs =
∫ T2

T1
(λM (t) + λC(t)) dt =

∑
j

vM
j I{T1≤tM

j ≤T2} +
∑

k

vC
k I{T1≤tC

k
≤T2} (3.13)

By equating the volume depleted to the volume separating the probes, we obtain the
Conservation Law of Queue Tomography:

Dobs = q2 − q1 = Vgap + Hgap (3.14)

This identity allows us to isolate the unknown latent variable Hgap. When we send the two
probe orders, P1 and P2, a certain amount of volume sits between these two probe orders.
This particular “gap” is made us of visible orders or Vgap as well as hidden orders Hgap.
Rearranging Equation (3.14), we solve for the hidden volume:

Hgap = Dobs − Vgap (3.15)

To generalize this finding across different market regimes and asset classes, we define the
Iceberg Density Coefficient, ρ, as the ratio of hidden volume to visible volume added. This
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dimensionless metric normalizes the hidden liquidity relative to the observable order flow:

ρ = Hgap

Vgap
(3.16)

Substituting the expression for Hgap, we arrive at the operational formula for the MDLT
estimator:

ρ = Dobs − Vgap

Vgap
= Dobs

Vgap
− 1 (3.17)

Hence, by observing only public data (Dobs and Vgap), we can recover the scalar parameter
ρ that characterizes the hidden depth of the limit order book. A value of ρ ≈ 0 implies
Dobs ≈ Vgap, consistent with a fully lit market. Conversely, ρ > 0 provides a direct measure
of dark liquidity intensity.

The Priority Metric

While the iceberg density coefficient ρ provides an instantaneous snapshot of hidden liquidity,
raw measurements derived from individual probe pairs are subject to stochastic microstruc-
ture noise, arising from latency jitter and transient liquidity fluctuations. To construct a
robust estimator suitable for algorithmic execution, we employ an Exponentially Weighted
Moving Averag to smooth the density sequence. Let ρk denote the raw density estimate
derived from the k-th probe pair. The smoothed density state variable, ρ̄k, evolves according
to the recursive filter:

ρ̄k = αρk + (1− α)ρ̄k−1 (3.18)

where α ∈ (0, 1) is the decay factor controlling the memory of the estimator. A higher α

increases responsiveness to regime shifts in hidden liquidity usage, while a lower α enhances
stability against measurement noise.
We define the MDLT Priority Metric, denoted as QMDLT (t, p), as the effective queue position
adjusted for this latent volume. This metric transforms the observable queue depth reported
by the exchange into a ”virtual” queue depth that reflects the true liquidity barrier facing a
new limit order. For a visible queue size Qvisible(t, p), the effective position is given by:

QMDLT (t, p) = Qvisible(t, p) · (1 + ρ̄t) (3.19)

This formulation implies that for every unit of visible volume, the market participant
must anticipate competing against an additional ρ̄t units of hidden volume. Under the
assumption that order arrivals follow a locally stationary Poisson process with depletion
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intensity λdepletion = λM + λC , we can derive the expected time-to-fill, E[τ ], for a newly
submitted limit order. Standard queueing theory dictates that the wait time is the ratio of
the queue length to the service rate. Substituting our adjusted metric yields:

E[τfill] = QMDLT (t, p)
λM (t) + λC(t) = Qvisible(t, p)(1 + ρ̄t)

λdepletion(t) (3.20)

This equation highlights the critical deficiency of naive models: strategies relying solely on
Qvisible systematically underestimate execution latency by a factor of (1 + ρ̄t), leading to
optimal execution schedules that are overly passive and prone to adverse selection. QMDLT

corrects this bias, providing a mathematically consistent basis for execution logic.

Expected Wait Time

We formalize the execution latency, τ , as the first passage time of the cumulative depletion
process reaching the order’s effective queue position. Let D(t) represent the cumulative
volume removed from the queue via market orders and cancellations over the interval [0, t].
For a limit order positioned at queue depth Q, the execution time is the stochastic stopping
time defined by:

τ(Q) = inf{t > 0 : D(t) ≥ Q} (3.21)

Under the assumption that the depletion process D(t) follows a compound Poisson process
with a constant aggregate intensity λdepletion = λM + λC and unit volume increments, the
expectation of the stopping time is linear with respect to the queue depth. Standard queueing
theory yields the first moment:

E[τ(Q)] = Q

λdepletion
(3.22)

In a market regime characterized by hidden liquidity, utilizing the observable queue depth
Qvisible yields a naive wait time estimator, τ̂naive. However, as derived in the previous
section, the true barrier to execution is QMDLT . Consequently, the corrected MDLT wait
time estimator, τ̂MDLT , is given by:

τ̂MDLT = QMDLT

λM + λC
= Qvisible(1 + ρ̄)

λM + λC
(3.23)

The discrepancy between these two estimators represents the Hidden Latency Bias. We can
express the relationship between the true and naive expectations as:

τ̂MDLT = τ̂naive · (1 + ρ̄) (3.24)
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This multiplicative relationship highlights the non-linear risk of ignoring iceberg orders. In
regimes where ρ̄ ≈ 1 (hidden volume equals visible), the naive model underestimates the time-
to-fill by 50%. Such underestimation directly impacts optimal execution logic, particularly
for Almgren-Chriss style trajectories, where the estimated variance of execution cost is a
function of time. By substituting τ̂MDLT into the cost function, traders can accurately
price the risk of ”resting” in the queue versus paying the spread, thereby minimizing the
implementation shortfall caused by unexpected delays.

3.5 Regime Normalization

A critical challenge in latency tomography is decoupling the structural properties of the
queue (depth) from the stochastic intensity of the arrival process (speed).

3.5.1 Corrected Latency Normalization

The raw execution latency T = T2 − T1 is inversely proportional to the queue depletion
rate. Consequently, a decrease in T could ambiguously signal either a shallower queue or a
surge in market aggressiveness. To resolve this ambiguity, we control for the Order Flow
Imbalance, which acts as a good measure for short-term buying or selling pressure. We
define the Order Flow Imbalance over an interval ∆t as the net flow of liquidity demanding
events:

OFIt =
∑

t−∆t<s≤t

vM
s · I{dirs=buy} −

∑
t−∆t<s≤t

vM
s · I{dirs=sell} (3.25)

High-magnitude OFI regimes are characterized by elevated arrival intensities λM (t), which
systematically bias raw latency measurements downward. To isolate the queue depth
contribution, we introduce the Normalized Latency, τnorm. This metric rescales the raw
time-domain measurement into ”volume-time” units, effectively normalizing for the varying
speed of market depletion:

τnorm = (T2 − T1) ·
(
λ̂M + λ̂C

)
(3.26)

By multiplying the time duration by the estimated depletion intensity, τnorm approximates
the total volume processed by the market during the probe interval. Unlike raw latency,
this quantity is invariant to changes in trading tempo and provides a more stable basis for
estimating the effective queue size QMDLT across different volatility regimes.
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3.5.2 Regime-Dependent Density

Empirical evidence suggests that the presence of iceberg orders is not uniform but highly
state-dependent. Institutional algorithms tend to vary their concealment logic based on
market urgency and volatility. Therefore, a global average ρ̄ may lack the specificity required
for precision execution. To address this, we adopt a regime-switching framework conditioned
on the OFI distribution. We partition the trading day into K distinct regimes based on the
quintiles of the OFI distribution, denoted as Rk for k ∈ {1, . . . , 5}. We maintain separate
exponentially weighted moving averages for the iceberg density coefficient within each regime.
Let ρ̄(k) represent the density estimator specific to the k-th OFI quintile. The update rule is
applied conditionally:

ρ̄
(k)
t =

αρt + (1− α)ρ̄(k)
t−1 if OFIt ∈ Rk

ρ̄
(k)
t−1 otherwise

(3.27)

The final Priority Metric is then constructed dynamically by selecting the density coefficient
corresponding to the current market regime:

QMDLT (t) = Qvisible(t) ·
(

1 +
5∑

k=1
I{OF It∈Rk}ρ̄

(k)
t−1

)
(3.28)

This stratified approach allows the MDLT algorithm to adapt to changing market microstruc-
tures, applying a higher ”hidden liquidity penalty” in regimes known to feature heavy iceberg
usage (e.g., low-volatility accumulation periods) while relaxing the penalty in high-velocity
trends where liquidity is predominantly visible.
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3.5.3 Real-Time Intensity

Algorithm 1 Estimate Order Flow Intensities
1: Input: Live market feed {(ti, typei, vi, pi)}ni=1, lookback window Twin

2: Output: Intensity vector [λL, λC , λM ]
3: Initialize counters: NL ← 0, NC ← 0, NM ← 0
4: for each event i in feed do
5: if tnow − ti < Twin then
6: if typei = “Limit” then
7: NL ← NL + 1
8: else if typei = “Cancel” then
9: NC ← NC + 1

10: else if typei = “Trade” then
11: NM ← NM + 1
12: end if
13: end if
14: end for
15: λL ← NL/Twin

16: λC ← NC/Twin

17: λM ← NM /Twin

18: Return [λL, λC , λM ]
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3.5.4 Probe Pair Execution with Tomographic Scan

Algorithm 2 MDLT Probe Pair Execution
1: Input: Best bid price p∗, gap δ (ms), quantity q = 1
2: Output: (T1, T2, Dobs, Vgap)
3: Observe Qvisible ← current LOB depth at p∗

4: Submit P1: Limit Buy, Qty=1, Price=p∗

5: Wait for fill, record T1 ← execution timestamp
6: δ milliseconds
7: P2 Limit Buy, Qty=1, Price=p∗

8: Wait for fill, record T2 ← execution timestamp
9: Scan market tape during [T1, T2]:

10: Dobs ← 0
11: for each event e in [T1, T2] do
12: if type(e) = “Trade” and price(e) = p∗ then
13: Dobs ← Dobs + volume(e)
14: else if type(e) = “Cancel” and price(e) = p∗ then
15: Dobs ← Dobs + volume(e)
16: end if
17: end for
18: Calculate visible adds:
19: Vgap ← sum of Limit orders at p∗ during (0, δ)
20: Compute ρ← (Dobs/Vgap)− 1
21: Update rolling average:
22: ρsmooth ← 0.9× ρsmooth + 0.1× ρ

23: Return (T1, T2, Dobs, Vgap)

3.5.5 Priority Metric Calculation

Algorithm 3 Compute Q MDLT
1: Input: Qvisible, ρsmooth, [λL, λC , λM ]
2: QMDLT ← Qvisible × (1 + ρsmooth)
3: µdepletion ← λM + λC

4: E[τ ]← QMDLT/µdepletion

5: Return (QMDLT,E[τ ])
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3.6 Numerical Example

In this section, we ground the abstract principles developed thus far in a concrete market
scenario. We present a detailed worked example showing how the tomographic measurement
principle operates in practice, from the submission of probe orders through the calculation
of hidden liquidity and the implications for execution strategy. This example is not merely
illustrative; it demonstrates the mechanical operation of the MDLT framework and validates
the claim that passive observation of the order book leaves critical information hidden.

3.6.1 Scenario

We consider a liquid equity market at mid-morning trading hours, when volatility is moderate
and order flow is predictable. The conditions are as follows:

Table 3.1: Market Conditions at Probe Submission Time

Parameter Value

Security Apple Inc. (AAPL)
Best Bid Price $100.00
Best Ask Price $100.01
Bid-Ask Spread $0.01 (1 cent)
Visible Queue Depth at Bid 500 shares
Market Time 10:30:00.000 (mid-morning)
Market Regime Moderate volatility, normal activity

The visible queue of 500 shares represents limit buy orders placed at the best bid price of
$100.00. These are the orders that any market participant can observe through the public
order book feed. However, as discussed in Section ??, this visible depth likely understates the
true queue depth because of iceberg orders. Our goal is to measure this hidden component
through active probing.

3.6.2 Probe Sequence and Execution Timeline

We now trace the sequence of events as our two probe orders proceed through the matching
engine. Each probe is a limit buy order of unit size (one share) submitted to the best bid
price. The temporal spacing between submissions is critical: it defines the window over
which we will observe queue dynamics.
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Table 3.2: Probe Order Timeline: Submission and Execution

Time (HH:MM:SS.mmm) Event Details

10:30:00.000 Submit P1 Limit Buy 1 share @ $100.00
10:30:00.025 Submit P2 Limit Buy 1 share @ $100.00 (δ = 25 ms)
10:30:00.058 P1 executes Execution time T1 = 58 ms after submission
10:30:00.087 P2 executes Execution time T2 = 87 ms after P1 submission

The inter-probe gap is δ = 25 milliseconds. This gap is chosen to be long enough to allow
meaningful market activity (new limit orders, cancellations, market orders) to occur between
submissions, but short enough that market regime (volatility, order flow intensity) remains
approximately stationary. The execution times T1 = 58 ms and T2 = 87 ms reflect the time
elapsed from the initial submission of P1 until each probe fills.
The key observation is that P1 and P2 do not execute instantaneously. Each must wait
for all orders ahead of it in the FIFO queue to be removed through either market order
execution or cancellation. The wait time for P1 is 58 milliseconds. By the time P2 executes,
an additional 29 milliseconds have passed. This additional waiting time encodes information
about the queue state at the moment P2 was submitted.

3.6.3 Inter-Execution Market Activity

Between the execution of P1 (at 58 ms) and the execution of P2 (at 87 ms), the order book is
not quiescent. Market orders arrive and execute against standing limit orders. Some traders
cancel their orders. The public market tape records all of these events. We now enumerate
what occurred during this 29-millisecond interval.

Table 3.3: Market Tape Events in the Interval [T1, T2] (Execution Interval)

Event Type at $100.00 Bid Volume (shares) Cumulative Volume

Market Sell @ $100.00 80 80
Market Sell @ $100.00 120 200
Cancel (Limit Order) @ $100.00 50 250
Market Sell @ $100.00 90 340
Market Sell @ $100.00 60 400

Total Volume Removed 400

The table above represents the complete market activity at the best bid price during the
execution interval. A market sell is an aggressive order that executes immediately against
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the best standing bid, removing shares from the queue. A cancellation is a limit order
withdrawal, also removing shares from the queue but not resulting in a transaction.
We aggregate across event types to obtain the total observed depletion:

Dobs = (market orders executed) + (limit orders cancelled) = 350 + 50 = 400 shares (3.29)

This quantity Dobs is fully observable from the market data feed. Every trade is time-stamped
and reported. Every cancellation is announced to the market. Therefore, Dobs = 400 shares
is a fact, not an estimate or inference.

3.6.4 Observable Queue Additions

While market activity removes volume from the queue during the interval [T1, T2], other
market participants are adding volume to the queue. Specifically, new limit orders arrive at
the best bid price after P1 is submitted but before P2 executes. These arrivals are equally
observable from the market data feed. We define the gap volume as the cumulative size of
all limit orders that arrive at the best bid price during the inter-probe interval [0, δ], where
time zero is the submission of P1 and time δ = 25 ms is the submission of P2:

Table 3.4: Limit Order Arrivals During the Probe Gap [0, δ]

Time (HH:MM:SS.mmm) Event: Limit Buy Arrivals at $100.00

10:30:00.005 Arrival of 20 shares
10:30:00.018 Arrival of 30 shares

Total Gap Volume 50 shares

These arrivals represent new buy-side limit orders placed at the best bid price. They
become part of the queue at the bid price, appearing in the public order book for all market
participants to see. Thus, the gap volume Vgap = 50 shares is also fully observable.

3.6.5 Conservation Principle

We now invoke the conservation principle introduced in Section ??. This principle states
that the volume removed from the queue between the execution times of the two probes must
equal the distance separating those probes in the queue. Formally, the distance between
P1 and P2 in the execution queue is the sum of two components: the visible volume that
arrived between their submission times, plus any hidden volume from iceberg orders:
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Distance between P1 and P2 = Vgap + Hgap (3.30)

Here, Vgap is the observable gap volume (which we computed as 50 shares), and Hgap is the
unobservable hidden volume from iceberg orders in the same interval.

Now, a fundamental fact about FIFO queue discipline: an order cannot execute until all
orders ahead of it have been removed. When P2 executes at time T2, this means all volume
separating P1 from P2 must have been depleted between the execution times T1 and T2. The
volume depleted is precisely what we observe from the market tape: Dobs = 400 shares.

By conservation:

Dobs = Vgap + Hgap (3.31)

Rearranging to solve for the hidden component:

Hgap = Dobs − Vgap = 400− 50 = 350 shares (3.32)

This is the key result. Between the submission of our two probes, hidden iceberg orders
concealed 350 shares of volume. This volume was never visible in the public order book,
yet it constrained execution, added to the effective queue depth, and affected the execution
dynamics of any trader trying to execute at the best bid.

3.6.6 Iceberg Density Estimation

We now normalize the hidden volume relative to the visible volume to create a dimensionless
measure of iceberg intensity. The iceberg density coefficient ρ is defined as the ratio of
hidden to visible volume:

ρ = Hgap
Vgap

(3.33)

Equivalently, substituting our expression for Hgap:

ρ = Dobs
Vgap

− 1 (3.34)

In our numerical example:
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ρ = 400
50 − 1 (3.35)

= 8− 1 (3.36)

= 7.0 (3.37)

This result indicates that for every one share of visible liquidity in this interval, seven shares
of hidden liquidity existed. Stated differently, the hidden volume is 700% of the visible
volume, or equivalently, the true queue is eight times deeper than the visible queue suggests.

On Iceberg Density

An iceberg density of 7.0 is high, indicating unusually heavy use of hidden orders during this
interval. In normal market conditions, typical values of ρ range from 0.2 to 0.6, indicating
that hidden volume is 20% to 60% of visible volume. The elevated value in our scenario
suggests one of several possibilities: (a) a large institutional investor is executing a significant
block trade and has hidden most of their order; (b) market makers are using iceberg orders
to manage inventory risks during a volatile period; or (c) the visible queue is unusually
shallow due to earlier trading activity, making hidden orders appear more prominent.

The interpretation is straightforward: ρ = 0 would mean the order book is fully transparent,
with no hidden liquidity. ρ > 0 indicates the presence of iceberg orders. Higher values of ρ

indicate heavier reliance on concealment strategies.

3.6.7 Adjusted Queue Position

Having measured the iceberg density from our probe pair, we can now apply this information
to refine our understanding of the queue depth at subsequent times. Suppose that at time
t = 87 ms (the moment when P2 executes), a trader wishes to submit a new large limit order
at the same price level. The trader observes from the public order book that the visible
queue depth is Qvisible = 500 shares.

If the trader naively assumes that this visible depth is the true queue depth, they will
make execution decisions under the assumption that the queue is shallow. However, our
probe measurement has just revealed that during the recent interval, the iceberg density
was ρ = 7.0. Assuming this density persists (an assumption we will refine in Chapter Two
through smoothing), the true effective queue depth is:
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QMDLT = Qvisible × (1 + ρ) (3.38)

= 500× (1 + 7.0) (3.39)

= 500× 8 (3.40)

= 4000 shares (3.41)

The MDLT metric adjusts the visible queue by the factor (1 + ρ) to account for hidden
liquidity. In this case, the adjustment is substantial: a visible queue of 500 shares becomes an
effective queue of 4000 shares. This adjustment captures the intuition that hidden icebergs
act as additional layers of queueing depth, even though they are not visible.

3.6.8 Wait Time Estimation

With an adjusted queue position in hand, we can now estimate expected execution times
using queueing theory. Recall that under the M/M/1 queue model, the expected wait time
for an order at queue position Q is

E[τ ] = Q

λM + λC
(3.42)

where λM is the rate of market order arrivals and λC is the rate of cancellations (both
measured in shares per second). For our scenario, we estimate from recent market data that
the combined depletion rate is λM + λC = 50 shares per second.

Naive Estimate

A trader who observes only the visible queue would estimate:

E[τnaive] = Qvisible
λM + λC

(3.43)

= 500
50 (3.44)

= 10 seconds (3.45)

This estimate suggests that the queue will clear in 10 seconds, a reasonable wait time. Based
on this estimate, the trader might decide that joining the queue at the best bid is preferable
to paying the spread through a market order.
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Multidimensional Latency Estimates

Our measurement, however, reveals a different picture:

E[τMDLT] = QMDLT
λM + λC

(3.46)

= 4000
50 (3.47)

= 80 seconds (3.48)

≈ 1.3 minutes (3.49)

The MDLT estimate suggests that the order will wait approximately 80 seconds—a much
longer duration. This dramatic difference arises entirely from the hidden liquidity revealed
by our probes.

Decision Rule

The trader now faces a different calculus. An 80-second wait exposes the position to
significant price risk. If the market price moves by even a few cents against the position
during that wait, the cost of the move will exceed the spread savings from joining the limit
order queue. The decision rule might be structured as follows:
First, we classify order sizes into categories based on the expected wait time and associated
risks:

(a) Small Orders (N < 100 shares): Even with an 80-second wait, the order is small
enough that it likely clears quickly from the queue. The decision is to join the queue at
the best bid. Expected wait time is less than 1-2 seconds even after MDLT adjustment.

(b) Medium Orders (100 ≤ N ≤ 1000 shares): The wait time becomes material. The
trader should consider a time-weighted average price (TWAP) algorithm that spreads
the execution across a longer time horizon (e.g., 10-15 minutes), reducing the impact
of any single segment of the order joining the queue at a given moment.

(c) Large Orders (N > 1000 shares): The wait time in a queue with depth equivalent to
4000 shares is prohibitive. The trader is better served by using market orders (paying
the spread immediately) or seeking out hidden liquidity pools and alternative trading
venues where the queue structure may be different.
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You Can’t Ignore Me

To quantify the cost of ignoring the hidden liquidity, consider a specific scenario. Suppose
the trader places a 1000-share order at the best bid, intending to wait for execution. Under
the naive model, the trader expects execution in 20 seconds (1000/50). However, the MDLT
model reveals the true wait time is 160 seconds. During that additional 140-second wait, the
market price might move. If the midpoint price rises by just 0.05 (five cents), the trader loses
1000× 0.05 = $50 due to the price move, an amount that vastly exceeds the $0.01 spread
savings from using a limit order. Conversely, if the trader had used the MDLT measurement
to inform the execution strategy, they might have chosen to (a) submit smaller segments of
the order across multiple price levels, (b) access hidden liquidity through alternative venues,
or (c) use market orders to ensure immediate execution at a known price. Each of these
alternatives protects against the risk of unexpected price movement during the wait.

3.7 Risk Analysis

Every active measurement carries an economic cost. Unlike passive inference, which requires
only data observation, active probing requires sending orders into the market. These
orders must execute to generate the signal we need, and execution incurs trading costs.
Understanding and managing these costs is critical to ensuring that the value of measurement
exceeds its price.The MDLT framework provides a principled approach to measuring hidden
queue depth, yet like all measurement systems operating in complex environments, it is
subject to costs, model assumptions, and failure modes. This section systematically examines
these constraints and proposes mitigation strategies. Understanding these limitations is
essential: a robust measurement system is one that explicitly acknowledges where it may
fail and implements safeguards accordingly.

Spread Cost Per Probe Pair

The direct cost of submitting a probe pair arises from the bid-ask spread. When we submit
a limit buy order at the best bid price, it executes at that bid price. We thus “pay” the full
bid-ask spread in the sense that we sell to the market at the bid price, which is lower than
the contemporaneous ask price. For a probe order of unit size (one share), the cost is the
spread itself:

Cprobe pair = 2× s

2 = s (3.50)

where s denotes the bid-ask spread. Each of our two probes costs half the spread (since we
execute at the bid and the ask midpoint is halfway between bid and ask). Summing both
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probes yields a total cost equal to the full spread. For highly liquid securities such as AAPL,
which typically trade with spreads of one penny, the cost per probe pair is:

Cprobe pair = $0.01 (3.51)

This cost is minimal in absolute terms. However, for the measurement to create positive
economic value, the information gain must justify this cost. We therefore define a break-even
condition.

Break-Even Analysis

The information extracted from a probe pair is valuable only if it prevents greater losses
in the subsequent main order execution. Let ∆slippage denote the per-share reduction in
slippage (measured in dollars per share) that results from using MDLT-informed execution
versus naive execution. For a main order of size N shares, the total benefit from improved
execution is:

Benefit = N ×∆slippage (3.52)

For the measurement to be economical, the benefit must exceed the cost:

N ×∆slippage > Cprobe pair (3.53)

Rearranging to solve for the break-even order size:

Nbreak-even = Cprobe pair
∆slippage

= s

∆slippage
(3.54)

To make this concrete, consider a realistic scenario. Suppose accurate queue depth mea-
surement prevents one basis point (0.01%) of slippage per share. For AAPL trading at
approximately $150 per share, one basis point is 150× 0.0001 = $0.015 per share. With a
probe cost of $0.01 per pair:

Nbreak-even = 0.01
0.015 ≈ 667 shares (3.55)

Alternatively, if we estimate more conservatively that MDLT prevents 1 basis point of
slippage in dollar terms (not percentage terms), then:

Nbreak-even = 0.01
0.0001 = 100 shares (3.56)

In practice, institutional investors executing orders of 100 to 10,000 shares are common
in equity markets. The break-even threshold of 100–700 shares is well within the range of
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institutional order sizes. For smaller retail orders (fewer than 100 shares), the measurement
cost exceeds the likely benefit. For institutional orders, the measurement is economical.

Probe Non-Execution

A subtle but important risk arises if probe orders fail to execute promptly. Our methodology
assumes that both P1 and P2 execute within a short time window (typically tens to hundreds
of milliseconds). If the market price moves away from the best bid during the measurement
interval, our limit buy orders will sit unfilled in the queue without contributing to the
measurement signal. Specifically, if the security’s price rises above our limit bid price (e.g.,
if the best bid moves from $100.00 to $100.01), our limit orders become “out of the money”
and will not execute until the price falls back. This creates two problems. First, we have
submitted orders but received no signal; the measurement is incomplete. Second, if the
price does later drop back, our old orders may execute far later than intended, at a time
when market conditions have changed and the measurement signal has become stale.nTo
mitigate this risk, we recommend using immediate-or-cancel (IOC) orders for probes rather
than persistent limit orders. An IOC probe is a limit order that executes any portion that
matches immediately, and any remainder is automatically cancelled. We would typically
set a timeout window (e.g., 200 milliseconds) within which the probe must execute. If
it does not execute within that window, it is cancelled, and we attempt a fresh probe in
the next measurement cycle. The tradeoff is that IOC probes may not execute at all if
market conditions are adverse (e.g., large spreads, shallow depth). In that case, we obtain
no measurement signal. However, a non-signal in an adverse market regime is arguably more
informative than a delayed signal that reflects stale conditions. We recommend monitoring
the probe execution rate: if the fraction of probe pairs that execute drops below 80%, this
indicates either a regime change (wider spreads, lower liquidity) or technical issues with
order submission, both of which warrant immediate recalibration.
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Chapter 4

Effective Liquidity Imbalance

“Depth is the amount of order flow required to change prices by a given amount...
A market is liquid if it is deep.” — Albert S. Kyle,1985

In the previous chapter, we established that a single probe pair (N = 1) acts as a scalar
measurement of the instantaneous effective queue depth, QMDLT . However, we posit that
liquidity is not a static variable; it is a dynamic process characterized by flow. A single
measurement tells us where the wall is, but not if it is moving, crumbling, or reinforcing
itself. To capture the dynamics of hidden liquidity, specifically its decay and replenishment
rate; we must extend the tomographic framework from a single snapshot to a temporal
sequence. By utilizing a Triple Probe Pair (N = 3) structure, we can measure not just the
state of the order book, but its first and second derivatives with respect to time. This allows
us to calculate a metric we define as the Effective Liquidity Imbalance (ELI), that predicts
near-term order book stability.

4.1 Liquidity Kinematics

We define a “Probe Pair” Pk as a set of two atomic orders sent to the same price level p

with a micro-separation ϵ. The execution latency difference ∆Tk reveals the instantaneous
intensity λk and effective depth Qk. To reconstruct such a dynamic state, we deploy a
sequence of three probe pairs spaced by a sampling interval δ:

1. P1 at t0: Returns effective depth Q(t0).

2. P2 at t0 + δ: Returns effective depth Q(t0 + δ).

3. P3 at t0 + 2δ: Returns effective depth Q(t0 + 2δ).
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Using the MDLT estimator derived in Equation (2.19), we obtain a discrete sequence of
observations:

Qobs = [QMDLT (t0), QMDLT (t0 + δ), QMDLT (t0 + 2δ)]

In the preceding chapter, we established that a single probe pair provides a scalar measure-
ment of the instantaneous effective queue depth, QMDLT . However, we posit that liquidity
is not a static variable; rather, it is a stochastic process characterized by continuous flow.
A single measurement reveals the location of the resistance wall, but it remains silent on
whether that wall is reinforcing itself through hidden replenishment or crumbling under the
weight of toxic flow. To capture the dynamics of hidden liquidity, specifically its rates of
decay and regeneration, we must extend the tomographic framework from a static snapshot
to a temporal sequence.

4.1.1 The Latent Liquidity State Function

We model the true resistance of the limit order book not as a discrete set of quantities, but
as a continuous, twice-differentiable function of time,

L : R+ → R+

. The value L(t) represents the effective depth (visible as well as hidden) available to absorb
market orders at time t. The fundamental epistemological challenge inherent in market
microstructure is that L(t) is unobservable. The market data feed provides only a discrete,
noisy sampling of the visible component, often masking the underlying trends of institutional
inventory management. To reconstruct the trajectory of the total liquidity function, we
invoke the principle of local polynomial approximation. For a sufficiently small time interval
δ, the evolution of any smooth physical system can be approximated by its Taylor series
expansion. By expanding L(t) around a reference time t0, we obtain a local approximation
of the liquidity surface

L(t) ≈ L(t0) + L′(t0)(t− t0) + 1
2L

′′(t0)(t− t0)2 +O((t− t0)3) (4.1)

This extensive expansion reveals that the state of liquidity is governed by three primary
components, which we define as the Liquidity Moments. L(t0) represents the instantaneous
position or depth; L′(t0) represents the velocity, or the rate of change in depth; and L′′(t0)
represents the acceleration, or the curvature of the liquidity function. To solve for these
three unknowns, a single measurement point is mathematically insufficient. We require a
system of at least three data points to fit the parabolic curve defined by the second-order
expansion, necessitating the development of the Triple Probe Pair system.
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4.1.2 Triple Probe Pair

We define a ”Triple Probe Pair” sequence as a set of three distinct tomographic measurements,
P1,P2,P3, submitted at times t0, t0 + δ, and t0 +2δ respectively. Using the MDLT estimator
derived in Chapter 3, these probes yield a vector of observed effective depths

Qobs = [QMDLT (t0), QMDLT (t0 + δ), QMDLT (t0 + 2δ)]T

. By aligning these discrete observations with the continuous Taylor expansion, we can
isolate the kinematic properties of the queue through finite difference methods.

Figure 4.1: Projected Liquidity Surface. This 3D visualization illustrates the Projected
Liquidity Surface Q̃(t + τ), constructed using the kinematic Taylor expansion derived in
Equation (4.8). The surface represents the estimated effective depth available at current time
t projected over a forward horizon τ . The distinct ”valley” depression highlights a Liquidity
Vacuum, a regime where negative velocity and acceleration predict an accelerating collapse
of the queue, allowing the Effective Liquidity Imbalance metric to anticipate instability
before it is fully reflected in the static order book.
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Liquidity Velocity

The first derivative of the liquidity state function, L′(t), represents the net flow of volume
into or out of the price level. It captures the struggle between liquidity consumption (driven
by market orders and cancellations) and liquidity provision (driven by new limit orders and
iceberg refills).

Proposition 4.1 (Liquidity Velocity). Let Q1 and Q2 be the effective depths measured at
t0 and t0 + δ. The Liquidity Velocity, denoted v̂liq, is the discrete estimator of the first
derivative L′(t0), given by the forward difference:

v̂liq(t0) ≡ Q2 −Q1
δ

(4.2)

The interpretation of v̂liq provides the first layer of directional signal . A negative velocity
indicates a state of Net Depletion, where the rate of consumption exceeds the rate of
replenishment, signaling a potentially collapsing queue. Conversely, a positive velocity
indicates Net Replenishment, suggesting that hidden liquidity is refilling the level faster than
aggressive orders can deplete it. This metric allows the algorithm to distinguish between a
static queue and one that is actively being reinforced or dismantled.

Liquidity Acceleration

While velocity indicates the direction of liquidity flow, it does not distinguish between
a sustainable trend and a transient shock. To separate panic-induced withdrawals from
resilient market making, we must measure the curvature of the liquidity function, formalized
as the second derivative.

Proposition 4.2 (Liquidity Acceleration). Let Q1, Q2, and Q3 be the effective depths
measured at intervals of δ. The Liquidity Acceleration, denoted âliq, is the discrete estimator
of the second derivative L′′(t0), given by the second-order finite difference:

âliq(t0) ≡ Q3 − 2Q2 + Q1
δ2 (4.3)

Acceleration here serves as a crucial convexity metric for the order book, distinguishing
between two distinct market regimes. The first regime is that of an Accelerating Collapse,
characterized by negative velocity and negative acceleration (v̂liq < 0, âliq < 0). In this
scenario, the queue is decaying at an increasing rate, often a signature of a ”liquidity vacuum”
where market makers pull quotes in anticipation of an adverse price shift. The second
regime is that of an Elastic Defense, where velocity is negative but acceleration is positive
(v̂liq < 0, âliq > 0). Here, although the queue is shrinking, the rate of decay is slowing.
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This convexity implies that as the visible depth collapses, new volume is stepping in to
stabilize the level, signaling strong hidden support and ”impact resilience.” By projecting this
quadratic model forward, we can calculate the Time to Liquidity Failure (TTLF), providing
a superior metric for execution timing than static queue size alone.

4.1.3 An Intuitive Example

To operationalize the kinematic principles derived above, we consider a representative market
microstructure scenario involving a Market Maker (henceforth, MM) providing liquidity at
the Best Bid. Suppose the public order book displays a static visible queue of 500 shares.
To the passive observer, this liquidity appears constant and stable. However, an execution
algorithm must determine whether this depth is real, i.e. it is supported by substantial
iceberg reserves or alternately fragile, representing a facade that will crumble under execution
pressure. To resolve this ambiguity, we deploy the Triple Probe Pair sequence with an
inter-arrival latency of δ = 50ms. The resulting measurements of effective depth allow us to
distinguish between two radically different liquidity regimes.

4.1.4 The Accelerating Collapse

In the first scenario, our probe sequence reveals a rapid deterioration of the liquidity surface.
At time t = 0ms, the initial probe detects a robust effective depth of Q1 = 2500 shares,
indicating strong hidden backing. However, at t = 50ms, the second measurement yields
Q2 = 2000 shares, representing a depletion of 500 shares and a negative velocity of −10
shares per millisecond. Crucially, at t = 100ms, the third measurement returns Q3 = 1000
shares. While the visible quote remains effectively unchanged to the public, the hidden
liquidity has plummeted by an additional 1000 shares. Calculating the liquidity acceleration
reveals the structural weakness of this queue:

âliq = 1000− 2(2000) + 2500
502 = −500

2500 = −0.2 shares/ms2 (4.4)

The negative acceleration coefficient (âliq < 0) serves as a quantitative signature of a “panic
withdrawal.” It indicates that the rate of liquidity consumption is not constant but increasing;
the market maker is actively pulling hidden backing in anticipation of an adverse price
move. The static visible quote of 500 shares is effectively a mirage, masking a collapsing
interior. Consequently, this kinematic profile generates an Aggressive Sell signal, advising
the algorithm to execute immediately at market rather than resting in a deteriorating queue.
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4.1.5 An Elastic Defense

In the second scenario, the initial conditions appear identical: Q1 = 2500 at t = 0ms,
followed by a drop to Q2 = 2000 at t = 50ms. The divergence occurs in the third interval.
At t = 100ms, the effective depth is measured at Q3 = 1900 shares. While the queue is still
shrinking, the magnitude of the loss has slowed dramatically, dropping only 100 shares in
the second interval compared to 500 in the first.
The acceleration metric captures this stabilization:

âliq = 1900− 2(2000) + 2500
2500 = 400

2500 = +0.16 shares/ms2 (4.5)

Here, the positive acceleration (âliq > 0) indicates convexity in the liquidity function.
Although the net flow is still negative, the deceleration of decay suggests “impact resilience.”
This dynamic implies that as the queue is hit, new iceberg orders are being reloaded to
absorb the selling pressure, effectively hardening the support level. Unlike the first scenario,
this profile suggests a sustainable floor. The resulting strategic signal is a Passive Buy,
validating the decision to join the bid and capture the spread, protected by the verified
hidden depth behind the order.

4.2 Generalized Extensions

In our humble opinion, the kinematic framework established in the previous section need
not be limited to quadratic approximations derived from a Triple Probe Pair. The logic
of measuring liquidity derivatives can be generalized to an arbitrary set of N probe pairs
(comprising 2N atomic orders) to reconstruct the liquidity surface with higher-order fidelity.
By increasing the sampling resolution, we aim to move beyond simple velocity and acceleration
to capture higher-moment dynamics such as ”jerk”, which often signals abrupt regime shifts in
high-frequency market making algorithms. Specifically, let T = {t0, t0 + δ, . . . , t0 + (N −1)δ}
denote the discrete transmission times of N sequential probe pairs. Correspondingly, let
Q = [Q1, Q2, . . . , QN ]T be the vector of observed effective depths returned by the MDLT
estimator at each timestamp. We seek to approximate the true Liquidity State Function
L(t) via a polynomial of degree K = N − 1. This approximation takes the form:

L(t) =
K∑

k=0
ck(t− t0)k (4.6)

To solve for the unknown coefficients ck, which encode the structural properties of the
queue, we formulate the observations as a linear system. Since the sampling intervals are
deterministic multiples of δ, the system maps to a classic Vandermonde matrix structure,
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Vc = Q:



1 0 0 . . . 0
1 δ δ2 . . . δN−1

1 2δ (2δ)2 . . . (2δ)N−1

...
...

... . . . ...
1 (N − 1)δ ((N − 1)δ)2 . . . ((N − 1)δ)N−1





c0

c1

c2
...

cN−1


=



Q1

Q2

Q3
...

QN


(4.7)

Solving for the coefficient vector c = V−1Q yields the coefficients of the Taylor expansion of
the liquidity function. From the definition of the Taylor series, these coefficients are directly
linked to the derivatives of the liquidity state at time t0. Specifically, the k-th derivative
is given by k!ck. This inversion allows us to extract the complete kinematic profile of the
order book, namely (a) c0, the Instantaneous Depth (State), equivalent to the static MDLT
metric. (b) c1 the Liquidity Velocity (Trend), representing the net flow rate, (c) 2c2 the
Liquidity Acceleration (Curvature), representing the stability of the flow and finally (d) k!ck:
The higher-order derivatives (Jerk, Snap), representing complex algorithmic reactions.

4.2.1 Effective Liquidity Imbalance

To synthesize these kinematic measurements into a single actionable signal, we introduce the
Effective Liquidity Imbalance. Traditional microstructure metrics, such as the Order
Book Imbalance, rely on static snapshots of visible depth. These metrics fail because they
treat a collapsing queue (negative velocity) as identical to a refilling queue (positive velocity)
if their instantaneous depths are equal. We resolve this by defining ELI not as a function of
current depth, but as a function of the projected depth over a forward-looking horizon τ .
We define the projected depth, Q̃(t + τ), as the expected effective liquidity available at time
t + τ , extrapolated using the measured velocity and acceleration. To ensure physical realism
(as liquidity cannot be negative), we apply a non-negative constraint:

Q̃(t + τ) = max
(

0, Q̂t + v̂liqτ + 1
2 âliqτ2

)
(4.8)

The Effective Liquidity Imbalance is then calculated as the normalized difference between
the projected depths on the bid and ask sides:

ELI(τ) = Q̃bid(t + τ)− Q̃ask(t + τ)
Q̃bid(t + τ) + Q̃ask(t + τ)

(4.9)

The metric fundamentally captures the trajectory of the order book rather than its state.
By incorporating the derivatives of liquidity, ELI correctly identifies the strength of a side
based on its momentum. A queue that is ostensibly deep but rapidly collapsing (v̂ ≪ 0) will
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yield a low projected depth Q̃, correctly identifying it as a weak support level. Conversely,
a shallow queue that is being aggressively replenished (v̂ ≫ 0) will yield a high projected
depth, identifying it as a hidden wall of liquidity. The above kinematic adjustment solves
the fundamental limitation of static OBI/OFI metrics, allowing the execution algorithm to
align with the true flow of institutional inventory.

4.3 Implied Dynamic Liquidity

While the kinematic framework established in Section 4.1 allows us to predict the temporal
evolution of liquidity at a discrete price level, it treats each level in isolation. This perspec-
tive, though necessary for detecting localized collapse, is insufficient for characterizing the
structural integrity of the order book as a unified system. A limit order book is not merely
a stack of independent queues; it is a coherent distribution of support and resistance. To
fully capture the market’s resilience to execution shock, we must extend our analysis from
the kinematics of depth ( i.e.how depth changes over time) to the dynamics of distribution
(how depth is structured across price). We therefore introduce the concept of Implied
Dynamic Liquidity, a physical framework that reinterprets the order book through the
classical mechanical moments of mass and inertia.

4.3.1 Center of Liquidity Mass

Standard execution benchmarks, such as the best bid or ask, are superficial indicators that
often fail to reflect the true gravitational center of the market. A thin layer of liquidity at the
touch may mask a massive wall of hidden inventory several ticks deeper, or conversely, a dense
top-of-book may conceal a complete vacuum below. To resolve this, we define the Center of
Liquidity Mass (PCLM ). Unlike the Volume-Weighted Average Price (VWAP), which is a
retrospective metric based on executed trades, the PCLM is a prospective metric derived
from the effective latent depth available to absorb future flow. Let P = {p1, p2, . . . , pn}
denote the set of active price levels on the bid side, and let QMDLT (pi) be the effective
queue depth at price level pi, adjusted for latent liquidity using the tomographic density
coefficient ρ derived in Equation (3.10). The Center of Liquidity Mass is defined as the first
moment of the liquidity distribution:

PCLM =
∑n

i=1 pi ·QMDLT (pi)∑n
i=1 QMDLT (pi)

The deviation between the current market price Pmkt and the PCLM serves as a measure of
Potential Energy. A market where Pmkt ≫ PCLM is “top-heavy,” implying that the visible
price is supported by fragile liquidity and is statistically likely to revert toward its center of
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mass under execution pressure. Conversely, convergence (Pmkt ≈ PCLM ) signals a ”Ground
State” where the visible price is anchored by the bulk of effective inventory, minimizing
impact cost.

4.3.2 Liquidity Inertia

The determination of the center of mass identifies the equilibrium price level, but it does
not quantify the stability of that equilibrium. In physical systems, stability is governed not
just by mass, but by the distribution of that mass relative to the center of rotation. We
define this property as Liquidity Inertia (Iliq), analogous to the moment of inertia in classical
mechanics. This metric quantifies the resistance of the order book to price displacement,
measuring how ”spread out” or concentrated the liquidity provision is around the PCLM .
Formally, Liquidity Inertia is the second moment of the effective depth distribution:

Iliq =
n∑

i=1
QMDLT (pi) · (pi − PCLM )2

The magnitude of Iliq reveals the structural character of the market’s defense. A low inertia
value (Iliq → 0) indicates a Concentrated Regime, where liquidity is piled tightly at a single
price level. While such a market appears deep, it is brittle; once the primary level is breached,
there is no secondary support to arrest the price slide. In contrast, a high inertia value
indicates a Dispersed Regime, or ”spongy” book, where liquidity is layered across multiple
ticks. This structure absorbs large execution shocks gradually, bending rather than breaking.

4.3.3 The Inertial Defense Hypothesis

By synthesizing the kinematic velocity v̂liq derived in Equation (4.2) with the static inertia
Iliq, we can formulate a generalized stability condition known as the Inertial Defense
Hypothesis. This hypothesis posits that the destructive potential of a liquidity depletion
event is inversely proportional to the inertia of the order book. We define the Stability Ratio
S as the interaction between the depletion force and the structural resistance:

S(t) = Iliq(t)
|v̂liq(t)|+ ϵ

This ratio guides the algorithmic response to a ”Liquidity Vacuum” event (where v̂liq < 0).

1. Inertial Dampening (S ≫ 1): If the algorithm detects high negative velocity but
the Liquidity Inertia is high, the market is undergoing an ”Elastic Deformation.” The
depth is depleting, but the dispersed nature of the support suggests the price level will
hold or soft-land. The optimal strategy is Passive Accumulation, joining the bid to
capture the spread.

59



Aryan Ayyar Sequential Kyle Games

2. Structural Failure (S ≪ 1): If negative velocity is accompanied by low inertia, the
market is undergoing ”Brittle Fracture.” The concentrated support is evaporating with
no backstop. The optimal strategy is Aggressive Liquidation, executing immediately
at market to exit before the price level snaps.

4.4 Hydrodynamic Liquidity

The kinematic framework we developed till now treats liquidity as a particle characterized
by discrete velocity and acceleration. However, in high-frequency regimes, liquidity is rather
rarely discrete; it behaves as a continuous, malleable medium subject to internal friction
and turbulence. To fully capture the ”flow” of orders, we therefore extend our analogy from
rigid-body kinematics to fluid dynamics, treating the Limit Order Book not as a static
stack of levels, but as a viscous fluid field. By applying conservation laws homologous to
Bernoulli’s Principle, and optimization laws analogous to the Principle of Least Action, we
can recover the latent ”forces” driving market transitions from the trajectory of the order
book itself.

4.4.1 Bernoulli’s Market Hypothesis

In classical hydrodynamics, Bernoulli’s equation dictates that for an incompressible, inviscid
fluid, the sum of static pressure, kinetic energy, and potential energy remains constant
along a streamline. Taking inspiration from this line of work, we propose a homologous
conservation law for market microstructure. We posit that the “Total Energy” of a price
level is conserved, distributed between its static depth and its trading velocity:

Csys = Pliq(t) + 1
2µv2

trade(t) + Ψ(p) (4.10)

where, (a) Static Pressure (Pliq): Represents the effective liquidity density, or depth (QMDLT ),
at the current price level. This is the ”stored energy” available to absorb shock. (b), Kinetic
Flow (1

2µv2
trade), represents the dynamic volatility or ”Trading Velocity.” Here, vtrade is the

rate of execution (shares per second), and µ is a mass coefficient representing the average
trade size and (c); Potential (Ψ) represents the fundamental value field, or the distance from
the Center of Liquidity Mass (PCLM ). This conservation law offers a profound implication
for market stability:
high-velocity trading creates low liquidity pressure. Just as the velocity of air over a
wing reduces static pressure to create lift, a spike in trading velocity (vtrade) necessitates
a reduction in static depth (Pliq) to satisfy the conservation of system energy. This might
help explain the phenomenon of “flash crashes” not as a disappearance of liquidity, but as a
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phase transition where static depth is instantaneously converted into kinetic velocity.

4.4.2 Least Liquidity Action

If the order book moves from State SA at time t0 to State SB at time t1, it does not traverse
this path randomly. We postulate that the market is bound to follow a “Path of Least
Resistance,” minimizing a cost. To model this ,let the Lagrangian of the market system be
L = T − V , where T is the kinetic energy of the order flow and V is the potential energy of
the price displacement. The Action S is defined as the integral of the Lagrangian over time:

S =
∫ t1

t0
L(q, q̇, t) dt =

∫ t1

t0

(1
2µq̇2 − V (q)

)
dt (4.11)

By Hamilton’s Principle, the observed path of the market price q(t) is the specific trajectory
that minimizes S. Consequently, the path must satisfy the Euler-Lagrange equation given
by

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0 (4.12)

The power of this formulation lies in its invertibility. In classical mechanics, one uses known
forces to predict a path. in market microstructure, we observe the path (N state transitions
of the order book) and wish to identify the unknown market forces (e.g., hidden accumulation,
liquidation pressure, or alpha). From the Euler-Lagrange relation, the ”Force” F acting on
the price is the negative gradient of the potential: F = −∇V . By mapping the trajectory
q(t) of the liquidity center over time τ , we can mathematically reconstruct the potential
field V (q). Hence, a path that deviates sharply from the momentum vector reveals a strong,
invisible ”Force” at that price level (e.g., a hidden iceberg or ”dark pool” barrier).It is also
worth noting that by aggregating N such transitions, we can generate a tomographic map of
the Latent Force Field of the market, effectively visualizing the invisible pressures that guide
price discovery before they result in a visible trade. We postulate that the price discovery
process is not a random walk, but a deterministic path optimization problem subject to
stochastic noise. The market seeks to transition between price levels by minimizing the
”energy” expended against the liquidity surface.
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Theorem 4.3 (Latent Force Recovery). Let p(t) be the observed price trajectory over the
interval [t0, t1]. Let Lvis(p) denote the visible liquidity density function derived from the
public limit order book. Assuming the market obeys the Principle of Least Liquidity Action,
any divergence between the observed acceleration p̈obs and the theoretical acceleration p̈theo

implied by visible liquidity is strictly equivalent to the gradient of the Hidden Liquidity Field
H(p). Specifically:

∇H(p) = µp̈obs + γṗobs +∇Lvis(p) (4.13)

where µ is the market inertia coefficient and γ is the viscosity (spread) coefficient.

Proof. We define the Lagrangian L of the market system as the difference between the
Kinetic Energy of order flow T and the Potential Energy of the liquidity barrier V . We
define the kinetic energy of the price mechanism as a function of the rate of price change ṗ.

T (ṗ) = 1
2µṗ2

where µ represents the ”mass” of the current volume profile (the resistance to acceleration).
The potential energy at a price level p is defined by the total liquidity depth Qtotal(p) existing
at that level. A high-liquidity level represents a high-potential barrier.

V (p) = αQtotal(p) = α (Lvis(p) + H(p))

where α is a scaling constant converting volume to potential units, Lvis is visible depth, and
H is hidden depth. The Action functional S is the integral of the Lagrangian L = T − V

over time:
S[p(t)] =

∫ t1

t0

(1
2µṗ2 − α(Lvis(p) + H(p))

)
dt

By the Principle of Least Action, the stationary path p(t) must satisfy the Euler-Lagrange
equation

d

dt

(
∂L
∂ṗ

)
− ∂L

∂p
= Fdis

where Fdis = −γṗ represents the non-conservative dissipative force of the bid-ask spread
(viscosity). Substituting the terms, we have

d

dt
(µṗ)− ∂

∂p
(−αLvis(p)− αH(p)) = −γṗ

µp̈ + α∇Lvis(p) + α∇H(p) = −γṗ

Now, we rearrange the equation to solve for the unknown gradient of the hidden liquidity
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∇H(p):
−α∇H(p) = µp̈ + γṗ + α∇Lvis(p)

Absorbing the constant α into the units of H, we obtain the stated result. The term ∇H(p)
acts as a ”Phantom Force” that deflects the price path. If the price decelerates (p̈ < 0)
approaching a level where visible liquidity Lvis is low (i.e., no visible reason to stop), the
equation necessitates a non-zero ∇H(p), which is paradoxically the mathematical proof of
an invisible wall.

4.4.3 Reconstruction of the Invisible Wall

To demonstrate the practical application of Theorem 4.3, we construct a numerical scenario
where an algorithm reconstructs the Hidden Liquidity Force field. Consider a high-frequency
trading interval of T = 3 seconds where the price of an asset drops from $100.00. The visible
order book is ”flat” (uniform depth), meaning there is no visible reason for the price to stop
dropping. However, the price trajectory shows a distinct deceleration. We aim to quantify
the hidden iceberg responsible for this ”anomalous braking”. We take the parameters to be
(i) Sampling Interval δ = 1 second, (ii) Market Inertia (Mass) µ = 500 units, (iii) Viscosity
(Spread Friction) γ = 50 units. and (iv) Visible Liquidity Gradient ∇Lvis = 0 (The visible
book is flat/constant). Let p be the vector of observed transaction prices at t = [0, 1, 2, 3]:

p =


100.00
99.90
99.82
99.80


Now, we express the Euler-Lagrange dynamics as a linear system. Let D1 and D2 be the first
and second-order finite difference matrix operators. The Hidden Force vector fhid (where
fhid = −∇H) is the unknown variable. The discrete equation of motion is given as

µD2p + γD1p +∇Lvis = fhid

Constructing the difference matrices for the internal points (t = 1, 2):

v = D1p ≈


p1 − p0

p2 − p1

p3 − p2

 =


−0.10
−0.08
−0.02

 (Velocity)
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a = D2p ≈
[
(p2 − 2p1 + p0)
(p3 − 2p2 + p1)

]
=
[
99.82− 2(99.90) + 100.00
99.80− 2(99.82) + 99.90

]
=
[
+0.02
+0.06

]
(Acceleration)

Now, we move on to solve for the force at the internal steps corresponding to the deceleration.
Since ∇Lvis = 0 (no visible support):

fhid = µa + γv

Substituting the vectors (aligning dimensions for the relevant intervals):
(t = 1, Price $99.90):

Fhid(t1) = (500)(0.02) + (50)(−0.10) = 10− 5 = +5 units

(t = 2, Price $99.82):

Fhid(t2) = (500)(0.06) + (50)(−0.02) = 30− 1 = +29 units

Finally, the matrix solution reveals a hidden force field that increases non-linearly from +5
to +29 as the price approaches $99.80.

fhid ≈
[

5
29

]

Despite the visible order book being flat, the Implied Dynamic Liquidity reveals a massive
”Dark Wall” located just below $99.80. The algorithm, detecting this +29 unit repulsion
force, would generate a ”Hard Floor” signal, advising traders to place limit buy orders at
$99.81, just above the detected iceberg.

4.5 On Least Liquidity Action

The classical formulation of market dynamics often treats the observed price path q(t) as the
minimizer of an action built from a kinetic term and a liquidity-dependent potential. While
intuitively appealing, that viewpoint implicitly measures displacement in price ticks—that is,
in the Euclidean coordinate p. In an electronic limit order book, however, the economically
relevant “distance” is not the price change ∆p, but the volume consumed to traverse ∆p.
This observation motivates a geometric upgrade to the principle of least action, transforming
liquidity from a potential field into a Riemannian metric.
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4.5.1 Metric Representation

We formalize the idea that economic distance in a limit order book is measured in executed
volume rather than price ticks by constructing a Riemannian metric induced by the order-
book density. Let λ(p, t) denote the effective order-book density (shares per unit price)
around price p at time t. In our MDLT construction,

λ(p, t) ≡ ∂

∂p
QMDLT(p, t), (4.14)

where QMDLT(p, t) is the cumulative depth observable or not observerable.For fixed t, define
the cumulative consumed volume required to move the price from p0 to p:

V(p | p0, t) =;
∫ p

p0
λ(u, t) du. (4.15)

Proposition 4.4 (Metric Representation Theorem). Fix t and assume λ(·, t) is measurable
and strictly positive on an interval I ⊂ R, with λ(·, t) ∈ L1

loc(I). Define the one-dimensional
Riemannian metric on I by

ds2 = g(p, t) dp2, g(p, t) ≡ λ(p, t)2. (4.16)

Then for any p0, p1 ∈ I, the induced geodesic distance equals the total executed volume
required to traverse between the two price levels:

distg(p0, p1) =
∫ p1

p0

√
g(p, t) |dp| =

∫ p1

p0
λ(p, t) |dp| =

∣∣V(p1 | p0, t)
∣∣. (4.17)

In particular, distg is invariant to monotone reparameterizations of price and measures
separation in shares rather than ticks.

Proof. Fix t and abbreviate λ(p) ≡ λ(p, t) and g(p) ≡ g(p, t). Since g(p) = λ(p)2 > 0 on
I, ds2 = g(p) dp2 defines a (one-dimensional) Riemannian metric. Let γ : [0, 1]→ I be an
absolutely continuous curve with γ(0) = p0 and γ(1) = p1. Its Riemannian length is

Lg(γ) =
∫ 1

0

√
g(γ(s)) |γ̇(s)| ds =

∫ 1

0
λ(γ(s)) |γ̇(s)| ds. (4.18)

Perform the change of variables u = γ(s). Since γ is absolutely continuous, du = γ̇(s) ds

holds a.e., and the area formula implies∫ 1

0
λ(γ(s)) |γ̇(s)| ds ≥

∫ p1

p0
λ(u) |du| =

∫ p1

p0

√
g(u) |du|. (4.19)
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Equality holds when γ is monotone (i.e. traverses each intermediate price once), in which
case

Lg(γ) =
∫ p1

p0
λ(u) |du|. (4.20)

By definition, the geodesic distance is the infimum of Lg(γ) over all such curves γ, hence

distg(p0, p1) = inf
γ(0)=p0,γ(1)=p1

Lg(γ) =
∫ p1

p0
λ(u) |du| =

∣∣V(p1 | p0, t)
∣∣, (4.21)

where the last equality follows from the definition (4.15). This proves (4.17). Finally, for
any C1 strictly monotone reparameterization x = ϕ(p), the line element satisfies

ds2 = g(p) dp2 = λ(p)2
(

dp

dx

)2
dx2,

so the induced arc-length
∫ √

g |dp| (hence distg) is unchanged. Therefore the distance
measures separation in executed volume rather than coordinate ticks.

4.5.2 Onsager–Machlup Interpretation

The geodesic principle admits a precise stochastic interpretation once we specify the diffusion
in a way that is coordinate invariant with respect to the liquidity geometry. A key subtlety in
stochastic analysis is that the Onsager–Machlup functiona, which defines the ”most probable
path” is sensitive to the choice of discretization (Itô vs. Stratonovich) unless the diffusion is
formulated intrinsically as Brownian motion on a Riemannian manifold.

Liquidity Manifold and Brownian Motion

Let the liquidity metric be defined by ds2 = g(p) dp2, where g(p) = λ(p)2 represents the
local resistance to price movement. We define the natural volume (arc-length) coordinate y

as:
y(p) ≡ 1

σ0

∫ p√
g(u) du = 1

σ0

∫ p

λ(u) du, implies ẏ =
√

g(p)
σ0

ṗ. (4.22)

In this intrinsic coordinate, the “noise with constant strength” corresponds to standard
Brownian motion:

dyt = dWt. (4.23)

Pushing this process forward to the price coordinate p via Itô’s Lemma yields a diffusion
with state-dependent volatility and a specific geometric drift term:

dpt = bg(pt) dt + σ0√
g(pt)

dWt, (4.24)
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where the drift bg(p) compensates for the manifold’s curvature:

bg(p) ≡ −σ2
0

2
Γ(p)
g(p) = −σ2

0
4

g′(p)
g(p)2 , (4.25)

and Γ(p) denotes the Christoffel symbol (connection coefficient) in one dimension:

Γ(p) ≡ 1
2g(p)−1g′(p) = 1

2∂p log g(p) = ∂p log λ(p). (4.26)

Proposition 4.5 (Exact OM means Geodesic Energy). For the coordinate-invariant diffu-
sion (4.24) (equivalently, Brownian motion on the manifold (R, g)), the Onsager–Machlup
functional for paths with fixed endpoints is given by:

AOM[p] = 1
2σ2

0

∫ t1

t0
g(p(t)) ṗ(t)2 dt + c. (4.27)

Consequently, the maximum a posteriori path between two price states is exactly the geodesic
that minimizes the liquidity metric energy

∫
g ṗ2 dt.

Proof. In the arc-length coordinate y, the path density for the standard Wiener process
dy = dW has the Onsager–Machlup action AOM[y] = 1

2
∫

ẏ2 dt (ignoring normalization
constants). Substituting the transformation ẏ = (√g/σ0)ṗ directly yields (4.27).

Finite-Noise Correction and Liquidity Curvature

In contrast to the intrinsic geometric Brownian motion, many empirical microstructure
models posit a driftless Itô diffusion

dpt = σ0√
g(pt)

dWt. (4.28)

This process is not Brownian motion on (R, g) because it lacks the geometric drift bg.
Consequently, the Onsager–Machlup functional picks up correction terms derived from the
Jacobian of the transition probability. Utilizing the Lamperti transform and the standard
OM expansion for Itô processes, we derive the action in p-coordinates:

AOM[p] = 1
2σ2

0

∫ t1

t0
g(p) ṗ2 dt︸ ︷︷ ︸

Geodesic Energy

− 1
2

∫ t1

t0
Γ(p) ṗ dt︸ ︷︷ ︸

Boundary Term

+ σ2
0

4

∫ t1

t0

Γ′(p)
g(p) dt− σ2

0
8

∫ t1

t0

Γ(p)2

g(p) dt︸ ︷︷ ︸
Curvature Penalty

. (4.29)

The second term integrates to a potential difference −1
4 log g(p)|t1

t0 , which is constant for
fixed endpoints. The non-trivial physics lies in the third term, which explicitly introduces
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the liquidity curvature scalar

K(p) ≡ Γ′(p) = 1
2∂2

p log g(p) = ∂2
p log λ(p). (4.30)

Theorem 4.6 (Asymptotic Geodesic Optimality). Consider the small-noise scaling dpt =
ε σ0g(pt)−1/2dWt as ε → 0. By the Freidlin–Wentzell theory of large deviations, the rate
function governing the probability of rare events is:

I[p] = 1
2σ2

0

∫ t1

t0
g(p(t)) ṗ(t)2 dt. (4.31)

Thus, in the high-frequency limit, the most probable path converges to the geometric geodesic,
and the curvature terms in (4.29) appear as higher-order finite-noise corrections.

Equation (4.29) reveals that the liquidity curvature K(p) = ∂2
p log λ(p) enters the path

likelihood explicitly when noise is finite. This suggests that “liquidity curvature” is a
physical force in the market: a liquidity vacuum (where λ(p) → 0) causes Γ and K to
diverge, sharply re-weighting the probability measure. The system favors trajectories that
traverse these high-curvature regions rapidly, providing a rigorous OM-level mechanism for
the sudden accelerations observed in flash crashes.

4.6 Stochastic Action Principles

Classical mechanics teaches us that a particle traverses the path that extremizes the action
functional

S[q] =
∫ t1

t0
L(q, q̇, t) dt,

where L = T − V is the Lagrangian, with T kinetic and V potential energy. The Euler–
Lagrange equations then yield deterministic trajectories satisfying d

dt
∂L
∂q̇i
− ∂L

∂qi
= 0.Financial

markets, however, are fundamentally stochastic. Order book states (pt, Qt) evolve according
to diffusion processes driven by Brownian noise and jump components, not deterministic
forces. The natural question is: does a stochastic analogue of the action principle exist, and
can it reveal hidden liquidity?
Hence, consider a d-dimensional stochastic differential equation (SDE) on Rd:

dXt = b(Xt, t) dt + σ(Xt, t) dWt, X0 = x0, (4.32)

where b : Rd × [0, T ] → Rd is the drift, σ : Rd × [0, T ] → Rd×d is the diffusion coefficient,
and Wt is a d-dimensional Brownian motion.
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Theorem 4.7 (Onsager–Machlup Functional). Assume b and σ are sufficiently regular
(Lipschitz continuous, uniformly elliptic), and let a(x, t) = σ(x, t)σ⊤(x, t) denote the
diffusion matrix. For a smooth path x : [0, T ]→ Rd, the Onsager–Machlup action is

I[x] =
∫ T

0

1
2
∥∥∥a−1/2(xt, t) [ẋt − b(xt, t)]

∥∥∥2
dt + 1

2

∫ T

0
∇ · b(xt, t) dt. (4.33)

The path density satisfies
dPx

dPWiener
∝ exp (−I[x]) ,

up to normalizing constants. Consequently, paths with lower action are exponentially more
probable.

Proof. We give a precise derivation of (??) via a small–time discretization and a passage to
the continuous-time limit. To avoid the well-known discretization ambiguities of Onsager–
Machlup for state-dependent diffusion, we work under the standing assumptions:

Assumptions. (i) b(·, t) ∈ C1(Rd;Rd) for each t ∈ [0, T ], with b and ∇b bounded and
jointly continuous in (x, t). (ii) σ(t) ∈ Rd×d is invertible for each t and independent of x,
with a(t) := σ(t)σ(t)⊤ uniformly elliptic: ∃m, M > 0 such that mI ⪯ a(t) ⪯ MI for all t.
(iii) We interpret the dynamics in the Stratonovich/midpoint sense, which is the canonical
discretization underlying Onsager–Machlup small-tube asymptotics.

Under these conditions,

dXt = b(Xt, t) dt + σ(t) ◦ dWt, X0 = x0. (4.34)

Let 0 = t0 < t1 < · · · < tN = T be a uniform partition with ∆ = tk+1 − tk = T/N . For an
absolutely continuous path x : [0, T ]→ Rd define the sampled points xk := x(tk) and the
midpoint

xk+ 1
2

:= xk+1 + xk

2 , tk+ 1
2

:= tk+1 + tk

2 .

The midpoint (Stratonovich-consistent) Euler scheme associated with (4.34) is

xk+1 = xk + b(xk+ 1
2
, tk+ 1

2
) ∆ + σ(tk+ 1

2
) ∆Wk, ∆Wk := Wtk+1 −Wtk

. (4.35)

Equivalently, define the standardized innovation

ηk(xk+1; xk) := σ(tk+ 1
2
)−1
(
xk+1 − xk − b(xk+ 1

2
, tk+ 1

2
) ∆
)
, (4.36)

so that ηk = ∆Wk under the scheme. Since ∆Wk ∼ N(0, ∆Id) and are independent across
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k, the joint density of the increments is

N−1∏
k=0

(2π∆)−d/2 exp
(
− 1

2∆∥ηk∥2
)

.

To obtain the joint density of (x1, . . . , xN ) given x0, we apply the change of variables
xk+1 7→ ηk at each step. Differentiating (4.36) with respect to xk+1 yields

Dxk+1ηk = σ(tk+ 1
2
)−1
(
I − ∆

2 ∇xb(xk+ 1
2
, tk+ 1

2
)
)
,

hence ∣∣∣ det Dxk+1ηk

∣∣∣ = |det σ(tk+ 1
2
)|−1 det

(
I − ∆

2 ∇b(xk+ 1
2
, tk+ 1

2
)
)

= |det σ(tk+ 1
2
)|−1 exp

(
tr log

(
I − ∆

2 ∇b(xk+ 1
2
, tk+ 1

2
)
))

= |det σ(tk+ 1
2
)|−1 exp

(
−∆

2 ∇· b(xk+ 1
2
, tk+ 1

2
) + O(∆2)

)
, (4.37)

where we used tr log(I + M) = tr(M) + O(∥M∥2) and tr(∇b) = ∇ · b. Therefore the discrete
path density (up to factors independent of the path) is

P∆(x0, . . . , xN ) ∝
N−1∏
k=0

exp
(
− 1

2∆∥ηk∥2 −
∆
2 ∇· b(xk+ 1

2
, tk+ 1

2
) + O(∆2)

)
. (4.38)

Now substitute (4.36) and note that

∥ηk∥2 =
(
xk+1 − xk − b(xk+ 1

2
, tk+ 1

2
)∆
)⊤

a(tk+ 1
2
)−1
(
xk+1 − xk − b(xk+ 1

2
, tk+ 1

2
)∆
)
.

Taking − log of (4.38) and collecting terms gives the discrete Onsager–Machlup action

I∆[x] =
N−1∑
k=0

1
2∆
(
xk+1 − xk − b(xk+ 1

2
, tk+ 1

2
)∆
)⊤

a(tk+ 1
2
)−1
(
xk+1 − xk − b(xk+ 1

2
, tk+ 1

2
)∆
)

+ 1
2

N−1∑
k=0

∆∇· b(xk+ 1
2
, tk+ 1

2
) + O(∆). (4.39)

Finally, assume x is C1. Then (xk+1 − xk)/∆ = ẋ(tk+ 1
2
) + o(1) and b(xk+ 1

2
, tk+ 1

2
) =

b(x(tk+ 1
2
), tk+ 1

2
) + o(1), so the first sum in (4.39) is a Riemann sum converging to

1
2

∫ T

0

(
ẋ(t)− b(x(t), t)

)⊤
a(t)−1(ẋ(t)− b(x(t), t)

)
dt.
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Similarly, the second sum converges to 1
2
∫ T

0 ∇· b(x(t), t) dt. Thus, up to normalization
constants independent of x,

I[x] =
∫ T

0

1
2
∥∥∥a(t)−1/2(ẋ(t)− b(x(t), t)

)∥∥∥2
dt + 1

2

∫ T

0
∇· b(x(t), t) dt, (4.40)

which is (??) (with a(x, t) replaced by a(t) under Assumption (ii)). Since the driftless
reference process Y defined by dYt = σ(t) ◦ dWt has (Gaussian) path weights corresponding
to the quadratic term in (4.40), the ratio of discrete path weights PX

∆/PY
∆ converges to

exp(−I[x]) up to constants, yielding the stated proportionality dPX/dPWiener ∝ e−I[x] in
the standard Onsager–Machlup (small-tube / midpoint-discretized) sense.

Remark 4.8. If σ = σ(x, t) depends on x, the Onsager–Machlup functional acquires ad-
ditional terms involving spatial derivatives of a(x, t) = σ(x, t)σ(x, t)⊤ (equivalently, con-
nection/metric terms on the induced manifold). The midpoint discretization remains the
canonical route to a coordinate-invariant expression, but the resulting action is not given
solely by (??).

Remark 4.9. The first integral in (4.33) penalizes deviations of the velocity ẋt from the
expected drift b(xt, t), weighted by the inverse diffusion matrix a−1. High diffusion (a large)
reduces the penalty, as large fluctuations are typical. The divergence term ∇·b is a Jacobian
correction accounting for the non-constant drift field.

We now specialize to the order book state Xt = (pt, Qt)⊤, where pt is the mid-price and Qt

is the (true) queue depth at the best bid. Under the MDLT framework, we model the joint
dynamics as:

dpt = µp(pt, Qt) dt + σp dW
(1)
t , (4.41)

dQt = −λM Qt dt + ηrefill dNt + σQ

√
Qt dW

(2)
t , (4.42)

where: (a) µp(p, Q) is the endogenous price drift (e.g., mean-reversion or momentum); (b)
σp > 0 is the price volatility parameter; (c) λM > 0 is the aggregate depletion rate (market
orders + cancellations); (d) ηrefill is the mean refill size per event; (e) Nt is a Poisson process
with intensity λrefill; (f) σQ > 0 governs stochastic fluctuations in depletion intensity; and
(g) W

(1)
t , W

(2)
t are independent Brownian motions. For analytical tractability, we first treat

the Poisson jumps separately (see Section 4.6.1) and focus on the diffusion component. The
effective drift becomes

b(p, Q) =
(

µp(p, Q)
−λM Q + λrefillηrefill

)
,
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and the diffusion matrix is

a(p, Q) =
(

σ2
p 0

0 σ2
QQ

)
.

Substituting into (4.33), the OM functional for a smooth path {(pt, Qt) : t ∈ [0, T ]} is:

I[(p, Q)] =
∫ T

0

[
(ṗt − µp)2

2σ2
p

+ (Q̇t + λM Qt − λrefillηrefill)2

2σ2
QQt

]
dt + 1

2

∫ T

0

(
∂µp

∂p
− λM

2

)
dt.

(4.43)
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Proposition 4.10 (Action Signature of Hidden Liquidity). Consider two scenarios:

(i) Lit market: All liquidity is visible, so Qt evolves according to (4.42) with known
λrefill.

(ii) Dark market: Hidden icebergs inject additional volume at rate λicebergηiceberg, unob-
servable to market makers.

Let Ilit[·] and Idark[·] denote the actions computed under the respective models. Then for the
same observed path (p·, Q·):

Ilit[(p, Q)] > Idark[(p, Q)] ⇐⇒ hidden liquidity present.

Proof. In the lit market, the drift for Qt is blit(Q) = −λM Q + λrefillηrefill. An observed
path with anomalously slow depletion (i.e., Q̇t > blit(Qt)) incurs a large penalty in the first
integral of (4.43).
In the dark market, the true drift is bdark(Q) = blit(Q) + λicebergηiceberg. The same observed
path now aligns more closely with bdark, reducing the integrand (Q̇t−bdark)2

2σ2
QQt

. By the mono-
tonicity of the exponential, this implies higher probability density under the dark-market
model.
Formally, the log-likelihood ratio test statistic is

Λ = Ilit − Idark =
∫ T

0

λicebergηiceberg
[
2(Q̇t + λM Qt − λrefillηrefill)− λicebergηiceberg

]
2σ2

QQt
dt.

Rejecting H0 : λiceberg = 0 when Λ > χ2
α threshold provides a rigorous statistical test for

hidden liquidity.

Remark 4.2 (Connection to MDLT). The probe-pair conservation law (Equation 3.8
in Section 3.4.3) provides an instantaneous estimate of ρ = Hgap/Vgap. The OM functional
approach complements this by analyzing temporal patterns in queue evolution. The two
methods are statistically orthogonal: MDLT detects spatial hidden volume at a fixed time,
while OM inference detects anomalous dynamics over intervals.

Empirics

We estimate {µp, σp, λM , λrefill, ηrefill, σQ} via maximum likelihood on tick-by-tick NSE data
(e.g., Nifty 50 constituents). For the price SDE (4.41), assuming µp = κ(p̄ − p) (mean-
reversion), discretize as:

pt+∆t − pt = κ(p̄− pt)∆t + σp

√
∆t εt, εt ∼ N (0, 1).
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The log-likelihood is

ℓ(κ, p̄, σp) = −N

2 log(2πσ2
p∆t)− 1

2σ2
p∆t

N∑
i=1

[∆pi − κ(p̄− pi−1)∆t]2 .

For the queue dynamics (4.42), we observe {Qti}Ni=1 and the number of refill events {Nti}.
The transition density is non-Gaussian due to the square-root diffusion and Poisson jumps.
We employ the Euler–Maruyama discretization

Qt+∆t −Qt = −λM Qt∆t + ηrefill∆Nt + σQ

√
Qt∆t ζt, ζt ∼ N (0, 1),

where ∆Nt ∼ Poisson(λrefill∆t). The compound log-likelihood becomes

ℓ(λM , σQ, λrefill, ηrefill) =
N∑

i=1
[−λrefill∆t + ∆Ni log(λrefill∆t)− log(∆Ni!)]−

1
2σ2

QQi−1∆t

N∑
i=1

[∆Qi+λM Qi−1∆t−ηrefill∆Ni]2.

Standard numerical optimization (L-BFGS-B in Python’s scipy.optimize) yields θ̂ =
(λ̂M , σ̂Q, λ̂refill, η̂refill).Hence, for an observed path {(pti , Qti)}Ni=0 sampled at intervals ∆t,
compute Velocity estimates via finite differences

ṗti ≈
pti+1 − pti

∆t
, Q̇ti ≈

Qti+1 −Qti

∆t
.

Drift evaluations, given by

µp,i = κ̂(p̄− pti), bQ,i = −λ̂M Qti + λ̂refillη̂refill.

With the Action Integrand

Li = (ṗti − µp,i)2

2σ̂2
p

+ (Q̇ti − bQ,i)2

2σ̂2
QQti

.

This can be easily be estimated by Numerical integration using the trapezoidal rule

Iobs =
N−1∑
i=0

Li + Li+1
2 ∆t + 1

2

∫ T

0

(
κ̂− λ̂M

2

)
dt.

Under H0 : no hidden liquidity, the action Iobs should match the theoretical baseline
computed from simulated paths under the null model. Generate M = 10,000 Monte Carlo
trajectories {(p(j), Q(j))}Mj=1 using the Euler–Maruyama scheme with estimated parameters
θ̂. For each, compute I(j). The empirical distribution {I(j)} provides the null reference.
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Define the test statistic
Z = Iobs − Enull[I]

SDnull[I] .

Reject H0 at significance level α = 0.05 if Z > 1.96 (anomalously low action) or Z < −1.96
(anomalously high action). Negative Z signals hidden liquidity injection; positive Z may
indicate spoofing (fake liquidity quickly withdrawn).

Why Does Lower Action Mean Higher Probability?

Question: “I understand that the OM action measures how ‘unusual’ a path is, but
the formula is intimidating. Why should I believe that minimizing I gives the most
probable path?”
Think of it this way: imagine you’re watching a drunk walk across a straight sidewalk.
At each step, they randomly stumble left or right (Brownian motion). If you see
them make steady progress in one direction without stumbling, you’d think: “That’s
weird—they’re not acting randomly!” The OM action quantifies this weirdness.
Mathematically, the term (ẋt − b)2 measures how much the observed velocity ẋt

deviates from the expected drift b. If the path follows the drift closely, this term is
small. The division by σ2 means: “If the noise is huge (σ large), I’m not surprised
by big deviations.” But if σ is tiny and I see a large deviation, the action explodes—
signaling an improbable path.
In our order book context: if queue depth Qt stays high despite aggressive market
orders (Q̇ ≪ −λM Q), the naive model assigns high action (low probability). But
if we account for hidden icebergs refilling the queue, the augmented drift bdark =
−λM Q + λicebergηiceberg aligns with the observation, lowering the action. The data
“prefers” the dark-market model!
This is the stochastic analogue of Occam’s razor: the model that makes the observed
data least surprising (minimal action) is most likely correct.

4.6.1 Extensions

Jump-Diffusion Regime

The pure diffusion model (4.41)–(4.42) neglects the discrete jump nature of order book
events. A more faithful representation uses a marked point process:

dQt = −
∑

ℓ

vℓ dNdepl,ℓ
t +

∑
k

uk dN refill,k
t ,
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where Ndepl,ℓ
t counts market orders of size vℓ and N refill,k

t counts limit order arrivals of size
uk. The OM functional for jump processes requires Lévy process theory (? ), with action
taking the form:

Ijump[x] =
∫ T

0

∫
Rd\{0}

[
log dνobs

dνmodel
(z)
]

νobs(dz, dt),

where ν is the Lévy measure. Implementing this requires non-parametric density estimation
of jump size distributions—a direction for future work.

Multivariate Order Books

For a full depth-of-book state Qt = (Q1(t), Q2(t), . . . , QL(t)) across L price levels, the
diffusion matrix a(Q) becomes L × L, encoding cross-level correlations (e.g., liquidity
migrations during regime shifts). The resulting OM action is:

I[Q] =
∫ T

0

(
Q̇t − b(Qt)

)⊤
a−1(Qt)

(
Q̇t − b(Qt)

)
dt.

The challenge lies in estimating the inverse diffusion matrix a−1 from high-dimensional,
noisy data. Regularization techniques (e.g., graphical LASSO for sparsity) and dimension
reduction (PCA on Q-space) are natural avenues.

Optimal Stochastic Execution

The Almgren–Chriss framework minimizes a cost functional balancing market impact and
risk. Incorporating the OM action suggests a modified objective:

J [x] =
∫ T

0

[
γ

2 ẋ2
t + ηxtpt + α · I[(p, Q)]

]
dt,

where α > 0 penalizes trading along improbable (high-action) paths. This biases execution
toward “typical” market trajectories, avoiding forced trades during anomalous liquidity
droughts. The resulting Euler–Lagrange equations couple the trader’s trajectory xt to the
order book dynamics Qt, yielding a stochastic optimal control problem solvable via dynamic
programming or relaxation methods. The OM principle hence reveals a deep connection
between information theory (Shannon entropy), statistical mechanics (free energy), and
finance (liquidity). The action I is precisely the relative entropy DKL(Pobs∥Pmodel) between
the observed path measure and the model. Hidden liquidity thus manifests as an information
gap—the market’s behavior is less surprising once we acknowledge the unobservable state
variables. This parallels dark matter in astrophysics: inferred not by direct observation, but
by anomalies in the dynamics of visible matter.
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Figure 4.2: Liquidity Moments Decomposition. A temporal analysis of the order
book’s kinematic properties derived from the Triple Probe Pair sequence. Top: The
instantaneous Effective Depth (Moment 0) Q(t), showing the system transitioning through
stable, collapsing, and recovering regimes. Middle: The Liquidity Velocity v̂liq (Moment 1),
defined in Equation (4.2) , where prolonged negative values indicate a state of Net Depletion.
Bottom: The Liquidity Acceleration âliq (Moment 2), defined in Equation (4.3). This sharp
negative spike identifies an Accelerating Collapse (panic withdrawal), while the subsequent
positive convexity signals an Elastic Defense where hidden liquidity stabilizes the price level.
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.1 Proofs

This section presents the various proofs of the different concepts mentioned in this book.

.1.1 Conservation Law

Queue at price p∗ evolves as:

Q(t) = Q(0) +
∫ t

0
dNL(s)−

∫ t

0
dNM (s)−

∫ t

0
dNC(s)

For probe P1 at position q1, execution at T1 implies:
∫ T1

0
(dNM (s) + dNC(s)) = q1

For P2 at position q2 = q1 + Vgap + Hgap:

∫ T2

0
(dNM (s) + dNC(s)) = q2 = q1 + Vgap + Hgap

Subtracting: ∫ T2

T1
(dNM (s) + dNC(s)) = Vgap + Hgap

But LHS is observable:
Dobs =

∫ T2

T1
dNM (s) +

∫ T2

T1
dNC(s)

Hence:
Hgap = Dobs − Vgap

.1.2 Unbiasedness Under Poisson Assumptions

Theorem: If NM (t), NC(t) are Poisson with constant rates λM , λC , and icebergs refill
uniformly in time, then E[Ĥgap] = Hgap.
Proof :

E[Dobs] = E
[∫ T2

T1
dNM (s) + dNC(s)

]
= (λM + λC)E[T2 − T1]

By definition, T2 − T1 is the time to deplete q2:

E[T2 − T1] = q2
λM + λC

= Vgap + Hgap
λM + λC

Substituting:
E[Dobs] = (λM + λC) · Vgap + Hgap

λM + λC
= Vgap + Hgap
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Hence:
E[Ĥgap] = E[Dobs − Vgap] = (Vgap + Hgap)− Vgap = Hgap
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