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Abstract

We develop a dynamic insider trading model of markets where informed participation
and price impact are jointly determined. In a CARA Normal rational expectations
environment, equilibrium prices are linear in private and public signals as well as noise-
trader order flow. We derive closed form expressions for adjacent horizon return covariances,
showing that short-horizon predictability follows a quadratic “Lambda Law” in market
impact - thin markets (high \) generate strong reversals, while sufficiently strong learning
regimes can produce short-run momentum. We extend the framework by endogenizing
insider entry. The certainty-equivalent gain from private information is strictly decreasing
in insider share, yielding a unique free-entry fixed point where informational rents are
competed away. This “Law of Insider Motion” formalizes the feedback between profitability,
entry, and market depth: shocks to noise-trader variance or information cost displace
insider mass, but participation dynamics restore stability. Our model links microstructure
features to return autocovariances and highlights conditions under which momentum,
reversal, and fragility arise endogenously.
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1. Introduction

Briefly explain the motivation, literature, and main contribution.

2. Model

2.1. A simple two-period model

In the spirit of the rational expectations general equilibrium models of Hellwig(1980) and
Grossman and Stiglitz (1980), we consider a setup with with time periods ¢ € {1,2,3}
with liquidation value and terminal payoff at ¢t = 4 given by V = 0 ~ N(0,03). ® The
risk-free rate is normalized to 0 and the unconditional mean of # is normalized to 0 (see
footnote on normalization). A fraction g € (0,1) of traders are informed, 1 — p are
uninformed, and noise traders submit exogenous order z; ~ N(0,02%) at t = 2. Traders
are CARA with coefficient ¢ > 0 and maximize U(W) = —exp{—aW }.At time t = 1,
there is a public signal p = 6 + ¢ observed by all market participants and at time t = 2,
a priate signal s = 6 4+ 7 observed only by the insider with (0, (,7) jointly independent
Gaussian, mean zero, and variances Var(f) = oj, Var(¢) = o, Var(r) = 02 Let the
corresponding precisions be ¢y = 0,2, Op =0, 2 ¢s = 0, 2. The equilibrium price at time
t = 3, is trivial, i.e. P3 = 6.For all t < 3, we solve for the equilibrium prices through
backward induction. Agents have CARA preferences and maximize end period utility
over wealth U;; = exp —AW; ;. Hence, the corresponding CARA-normal demands of the

agents can be given as

o E[Q | p} — P

Xuz = aVar(0 | p)’ (1)
_E[f]s] - P,

Xr2 = aVar(f|s)’ )

'Without loss of generality we set the unconditional mean of 6 to 0 (and the risk-free rate to 0).
In a CARANormal setting with Gaussian signals, any nonzero mean mg = E[f] can be absorbed by
demeaning 6 =0—mg, p=p—me, and § = s —my. All our results hold promise even if this assumption
is relaxed

2We work on a filtered probability space (2, F,{F;}{_o,P) supporting a jointly Gaussian vector
(0,¢,7,22) ~N(0,%) with 6 1L ¢ 1L 7 1L 2, Var() = o3, Var(¢) = o7, Var(r) = 02, Var(z2) = o2.



Results from the projection theorem give us

_ P 1
s 1
E[9|s]:¢6i¢ s Var(9|s):¢e+¢ : (4)

Market clearing and pricing rule:. Market clear when agents’ demands are met, giving

us the clearing rule

pXro+ (1= p)Xyz+2=0 (5)

We conjecture a linear price P, = ags + [ap + Y222. Solving for the clearing conditon

yields®

1t
2 @27
Py = ass + Bap + Y22 with By = (1_(;)%, (6)
2
@
2 @27
Dy =g+ 1195 + (1 — 1) @ (7)

Assumption 2.1 (CARANormal, competitive, exogenous information). (i) Agents have
CARA utility Uy(w) = —exp{—aw} with a; > 0; (ii) (0,{¢:-},{m},{z}) are jointly
Gaussian with the standard independence restrictions stated in the main text; (iii) Agents
are price takers and the information flow is exogenous (today’s position does not affect
the law of future signals or prices other than through wealth).

Equilibrium at t = 1.. At t = 1 both informed and uninformed observe only the public
signal p = 0 + (. Let 2, ~ N(0,02%) be the noise order at ¢t = 1. With symmetric

information, the aggregate demand of both class of traders is given as

E[6’|p]—P1

X Xy = —————.
11+ Xyt aVar(0 | p) (8)

Hence the linear pricing rule?

3Tf E[6)]
4Tf E[6)

: b0 )
0, add an intercept PTG 6 to (m).

bo 7
0, add ¢9+9¢p 0 to Py.

=0+
=0
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P = Bip+ mna with ! (9)
a
1= al’
D = ¢y + gbp. (10)

2.2. Short- and Intermediate-horizon Covariances

Throughout this subsection we use the pricing rules in () and (I0), the signal definitions
s =60+ 7 and p = 0 + (, and the mutual independence and mean-zero assumptions for
(0,¢, 7, 21,22). We also assume Var(z;) = Var(z;) = 02 and z; 1L 2. We now define
the one-period returns Ry = P, — P, and Ry = P; — P, = 6§ — P,, and the two-period
intermediate horizon return Ry 3 =P — P, =0 — P;.

Proposition 2.2 (Short and intermediate-horizon return covariances). Under the information
structure s = 0 + 1, p = 0 + ¢, with mutually independent, mean-zero (0,7,(, z1,22) and
variances Var() = oj, Var(r) = o2, Var(¢) = o7, Var(z) = o2, let precisions be

g = 0,2, ¢ps = 072, b, = 0,% . With Py = a5 + op + Y222 and Pi = 1p + 121 the
one-lag (short-horizon) and short-vs.-two-period (intermediate-horizon) covariances are
given to be®

— 2
S =Cov(Ry, Ry) = nl M)(}S;S * ¢p) - ;1%2 + (— g)g 02) (11)
Sfundamental (information) inventory (order flow)
L :COV(R1,R1 3) = M¢S + 120'2 . (12)
7 O Dy 7 ”
Sfundamental (information) inventory (order flow)

Information is an industry with free (or at least elastic in the real sense) entry. When
short-horizon trading profits attributable to private signals are abundant, more capital
pays the fixed and variable costs of becoming informed , i.e. buying data, talent,
and technology which is exactly the competition mechanism emphasized by ? |. As
informed participation expands, prices incorporate the private signal sooner and more
completely; market depth increases and price impact falls, so the incremental value
of information is competed away see [? 7 |. This crowding logic delivers a natural

negative feedback. Profits naturally attract entry; entry raises informational depth; depth

5For proof, see



compresses profits. We have reason to belive that this same mechanism organizes short-
horizon return patterns. With few informed traders, new private information diffuses
slowly and produces return continuation a.k.a momentum as prices learn across periods.
As informed participation grows, two forces push back, namely (i) public-signal repricing
meaning later trades re-weight away from yesterdays public signal toward todays private
signal. (ii) Inventory pressure that is later unwound. We show that together they
generate a hump in short-run predictability: momentum at intermediate informed share;
mean reversion when informed trading is heavy, consistent with asymmetric-information
microstructure accounts of return autocorrelation [e.g., 7 |nd with the broader link
between liquidity and expected returns as documented by [? ]. Especially in stressed
states, when funding constraints bind or noise-trader activity is elevated, temporary
impact rises and short-horizon reversals strengthen with the classic funding-liquidity
spirals and loss spirals as shown by ? | and the momentum crash narrative in 7 |.

Real-world episodes often fit this loop. Alternative data waves and newer advanced
analytics create an early adopter edge; rapid diffusion across funds compresses that edge
as prices internalize the signal (with depth up and correspondingly impact down). Around
scheduled disclosures (for example earnings, macro prints), order flow is more aligned with
fundamentals, so short-run predictability temporarily rises before being competed away
by subsequent entry and deeper markets (cite papers). Regulatory and technology shocks
for e.g., research unbundling, market-structure changes, and algorithmic adoption shift
costs, depth, and impact in the directions as documented by ? ? 7 ]. Empirically,
informed participation can be proxied by the Probability of Informed Trading (PIN)
and related measures [? 7 ]. Price impact can be estimated by intraday Kyle/Hasbrouck
estimates or by the method used by Sadka(2006) originally incorporating the fundamental

determinants of the bid-ask spread as proposed by Glosten and Harris(1988).
3. Dynamic Model

For our model, we consider a T-period version of the previous section with dynamic
insider entry. Time is discrete, t = 1,2,...7T, with terminal payoff Pr = 6. Agents are

competitive CARA utility maximizers with period t risk aversion a; > 0. At each trading
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Figure 1: Learning-helped regime (a; > 0). The short-horizon covariance S(\) is quadratic in A with a
unique minimum at Ayin = B:/(204) and a sign flip at \g = 8;/a;. The dashed line marks the structural
impact A = a/®, which determines the realized regime.

date t < 5 (a) A public signal p;- = 6 + (- is observed by all, where “¢t~” denotes the
most recent public update prior to trade t. (b) A fraction p; € [0, 1] of traders observe
a private signal s; = # + 7;. (c) Non-informational order flow or noise is z ~ N(0,02,),
independent across ¢t and of (6,(,—, 7). Let the prior be § ~ N(0,03) with precision
¢p = 0,°. We denote signal precisions by ¢, ,~ = Var((;-)~ and ¢, = Var(r;)~!. Now,
define cumulative (posterior) precision mass at ¢

Dy = o + D> Ppu- + Dt Ds i (13)

k<t k<t

In line with Luo, Subramanyam and Titman (2022) who use the loadings on the noise
trader component as a measure of liquidity, we use this Kyle’s lambda ® as a measure of

liquidity

6The IMFs 2022 liquidity stress-testing framework states directly: Liquidity is also measured as the
price impact of trading. Kyles lambda measures the price impact of net trading activities. This is used
to diagnose and compare market liquidity across assets and time.
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Figure 2: Noisedominated regime (ay < 0). S(A) is negative for all A > 0, so short-run returns exhibit
reversal throughout. The dashed line shows the structural A = a/®.

3.1. Short-Horizon Predictability - The “Lambda Law”

Proposition 3.1 (Price and Impact). Under CARANormal and competitive price taking,
the periodt equilibrium price is linear in sufficient statistics

Qy

Bo= s + Bip- + Moz, Ar = o (14)
t
with loadings oy = ”’%’S:’t, By = d)fl;t_. Impact Ny is the slope as shown in Kyle(1985) and

market depth is defined as 1/ \, = &Dt/at.

Proposition 3.2 (Lambda Law). The short-horizon autocovariance in the previous subsection
at time t decomposes as

1— - -
S, = Cov(Ry, Rs1) = (Mt( 116)(Ds.t + Pp >—0§7t> A2 - 115 A, (15)

a? ay
B
(bp t—
= 16
Bt ¢9 + gbp,t* ( )

Here )\; is the price impact as in Kyle(1985) the bigger );, the more price moves when
a given amount is traded, which is another way to say the market is thinner and less
liquid. The coefficient a; weighs the strength of learning or how much prices can move
toward fundamentals because informed and uninformed traders bring genuine information

into the market. this is against the drag from noise trading and inventory pressure,
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summarized by Ug’t. The coefficient [3; measures a purely mechanical reweighting force
- after a public signal arrives, the next trade partially undoes that move as prices lean
more on fresher private information, which tends to create short-run reversal. This leads

to two important phenomenon which we discuss further.

3.1.1. Noisy Reversals

When a; < 0, noise and risk-bearing constraints outweigh the informational pull toward
fundamentals. In such a case , S;(\;) < 0 for every A, > 0. Intuitively, even in already
deep markets (small )\;) any marginal rise in impact makes short-run reversal stronger
because the first-order effect of trading is to reweight away from yesterdays public signal;
mathematically, S;(0) = —f; < 0. As liquidity thins further (larger \;), the inventory
component grows quadratically and pushes S; more negative, producing the well known
snap-back behavior typically seen in stressed markets (see for example Brunnermeier and

Pedersen, 2009)
3.1.2. Learning Regime

When «; > 0, learning is strong enough to counter some of the impact drag. Thus, the

quadratic opens upward and has a unique point of most reversal at

Bi 3

A min — 5 A min) — T ) 1
t, 20, St(At,min) ta, © 0 (17)
and a unique sign flip at
B
Atg = —. 18
w="2 (15)

For impacts below ), the reweighting force dominates and short-run returns tend to
reverse (S; < 0). Beyond )., learning dominates and short-run continuation (in other
words, momentum) appears (S; > 0). Economically, getting to the right-hand side usually
requires either unusually strong and timely signals (high ¢, with a balanced insider share
f¢) or unusually thin markets; However, in many settings the feasible A\; never reaches that
region. The impact that actually prevails is pinned down by depth, \; = a;/®;, where
D = Qg+ D k<t Pp i~ + k<t HkPsk- The realized regime is therefore determined by where
this structural \; sits relative to Ay min and A;o. Policies or technologies that deepen

markets (larger ®; or smaller a;) shift \; left and make reversal more likely; stronger



private information or a more balanced insider share raise a; and move the thresholds,

potentially softening reversal even without changing traded volumes. ?

4. Insiders Attract Insiders : Dynamic Informed Entry

In the previous section, public signals are already baked into prices, so any advantage
from them is mostly competed away(due to market efficiency) which means whats left
comes from the market not being perfectly responsive at every moment. Relative to a
public signal, a private signal confers two distinct benefits (i) it provides a higher precision
estimate of the fundamental value to the observing agent and (ii) it simultaneouly provides
a transient oppurtunity to trade before prices fully internalize (see limits to arbitrage).
The latter arises as depth is finite and random non-informational order flow keeps prices
slightly deviated from their conditional expectation. To add on, with a positive price
impact, mean squared pricing errors should be strictly positive meaning an accurate
posterior can be profitably deployed. We attempt to endogenize this phenomenon by
allowing for dynamic insider participation. Agents become informed when the certainity
equivalence between private and public-only forecasts is positive. Hence, insiders are
incentivised to enter. Entry raises the mass of informed traders and increases the effective
depth (thereby lowered price impact) and tilts price loadings towards private signals
thereby paradoxically reducing the certainity equivalence. This, shrinks the information
rent. In our model, the value of being informed at date ¢ is precisely the increase in
certainty equivalent from replacing a public-only posterior with a public-plus-private
posterior while holding the same equilibrium price fixed. We find the certainty equivalent
to be quadratic in forecast error and yielding a closed-form.

4.1. Ezxclusivity Rent of Private Signals
Proposition 4.1 (Certainty Equivalent Gain). Let my,s; = E[0 | pi-, s¢] and m,; = E[0 |
pi-|. With the equilibrium pricing rule P, = Wysy + Qupi- + Ayzy, v, = M, Q, =

Dy
¢{’1;t; , N = & the per-capita certainty-equivalent gain from being informed is
1 (B (mpey = P E[(my,— P
ACE(j) = - - (19)
2A;, \ Var(0| p-, s Var(0 | p;-)

"When comparing to data, recall that the feasible impact is typically constrained by the structural
value Ay = a;/®; the realized regime is determined by the location of A; relative to Ay min and A o.
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The numerators in (I9) are mean squared pricing errors under the two information sets,
averaged over the unconditional law of (6, (;-, 7, 2;). The denominators rescale by the
remaining payoff risk under each information set, reflecting the certainty equivalence.
Substituting W;, 2, A; and the posterior variances Var(6 | pi—, s;) = (g + Gpi— + bss) "

and Var(0 | p;-) = (¢o + ¢ps-) " yields a reduced form in the impact parameter:
ACEt(ILLt) = /{l,t A? — I€27t At + I€07t, (20)

with the parameters given by

Ps,
Fie =5 3 ;0 (%26250 O+ D2+ 15 Ps o + 20 Dy Dpi— + oy A Dy ¢9> (21)
7
Os,
Koyt = 2o te (#t Gs,t + ft Do + ¢p,t7) (22)
$
¢s t
= ! 23
Rot 2 a; by ( )

A conveinient way to read the closed form expression is to map each term to its distinct
source of informational rent. First, the quadratic component captures the variance of
mispricing. This is because in particular, s, is linear and scales in the variance of noise
trading. In contrast, the linear term in lambda, reflects the predictable repricing away
from the public weights. In equilibrium, x;, and kg, are strictly positive functions of
signals precisions and vanish as depth becomes infinite. Hence, under the regularity
conditions of non-degenerate noise trading and strictly positive precisions, the certainity
equivalence ACFE is strictly decreasing on [0, 1]. Hence, private information yields the
largest rent when few agents are informed and as the entry crowds, the signal into price
deepens the market.

4.2. Law of Insider Motion

Classical models of informed trading have long emphasized the impact of insiders on prices
and liquidity, but often treated their presence as fixed. For example, Kyle (1985) studied
the case of a monopolistic insider facing competitive market makers, while Glosten and
Harris (1988) showed how market makers update beliefs and set impact coefficients as
a function of order flow. Holden and Subrahmanyam (1992) extended such analysis to

multiple insiders, demonstrating that competition among informed traders erodes their

10



informational rents. Yet in all of these frameworks, the number of insiders is taken as
exogenous.

Our approach departs from this tradition by endogenizing the population of informed
traders. We model insider entry as a dynamic response to profitability. At date ¢, suppose
a fraction u; of traders are informed. Each insider earns a certainty-equivalent gain
ACFE (). When ACE;(uy) > Ky, where k; denotes the cost of acquiring and deploying
private information, new entrants are drawn into the market; when ACFE; () < kq, some
insiders exit. Instead of assuming a fixed cross-section of beliefs, we endogenize the entry
and exit of insiders as a function of informational rents.This generates a simple feedback

mechanism

M1 = H[o;]{ (1=06)p + 1 [ACEt(Nt) - ’it]+ }, 6€(0,1], n>0, (24)

where [z]; = max{z,0} captures onesided entry, § captures obsolescence/exit, 7 governs
the speed of capacity adjustment, and IIjy 1) projects onto [0, 1]. For settings where smooth
interior participation is desirable (e.g., heterogeneous costs or noisy adoption), a smooth

alternative that keeps pyy1 € (0, 1) without truncation is the logit map

1
1+ exp( — 7 [ACE (1) — "Gt]) 7

Hi+1 = V> 0, (25)

which encodes the same economics: profits attract entry; entry deepens markets and
competes those profits away by lowering impact \; = a;/®; and tilting prices toward

s¢. Figure 77 illustrates how shocks to noise trader variance drive this adjustment process.

In the Kyle (1985) framework, noise variance determines the camouflage available to
insiders: when variance is high, insiders can trade more aggressively under the cover of
noise, raising their informational rents; when variance is low, their trades become more
transparent, compressing rents. In our model, these shocks play the role of perturbations
to the insider ecology.

A positive shock to noise variance raises AC'E;(p;) above cost, triggering entry and an
upward drift in p,. Conversely, a negative shock lowers rents below cost, inducing exit.

The “Law of Insider Motion” thus acts as a stabilizing force: shocks displace the insider

11



Certainty-Equivalent Gain from Being Informed and Free-Entry Point
1.2}

— ACE(p)
—==Information cost k

ACE(u)
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Figure 3: Certaintyequivalent gain from being informed, ACE;(u), as a function of insider mass p. The
solid line shows the decreasing informational rent as participation deepens and price impact falls. The
dashed line denotes the fixed information cost k, and their intersection identifies the unique freeentry
equilibrium p*.

population from p*, but the feedback mechanism of entry and exit pulls the system back.

4.8. Fized point and stability

Proposition 4.2 (Monotone value of information and free entry). Let 6 ~ N(0,03),
p =0+ with{ ~N(0,02), s =0+ 71 witht ~ N(0,02), and z ~ N(0,02) mutually

independent. Fiz date t and suppose the competitive price is

HPs Pp a

P(p) = A(p) s+ B(p)p+Ap)z,  Alp) = , Bp) = Mp) = :

(1) = A(p) (1) (1) ()‘P(u) (1) <)<1>(u)

where g = 1/0F, 0, = 1/0}, @5 = 1/0% and ®(1) = @p + ¢y + pps. Let mys = E[f |
D, 8] = wyp + wys with

¥p Ps

Wp = ——F Wg = ————,
P e+ ot s ©o + Pp + ©s

and m, = K[ | p] = w,p with w, = —22—. Define

1 Var(mps — P(,u)) Var(mp - P(u))
ACE(n) = 2a ( Var(d | p,s)  Var(0]p) ) ’

with Var(0 | p,s) = (v + ©p + ¢s) "t and Var(0 | p) = (po + ¢p)~'. Then ACE(p) is
continuous and strictly decreasing on [0,1]. Consequently, for any cost r the freeentry
equation ACE(u*) = k admits at most one interior solution p* € (0,1) (with corner
solutions otherwise).

12



Short-horizon covariance along the endogenous p_t path
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Figure 4: Short-horizon covariance along the equilibrium entry path. As p; rises and impact Ay = a/®;
falls, S; = Cov(Ry, R;+1) moves along a single-peaked S(u) curve and stabilizes at S(u*).

4.4. Free Entry and Participation Dynamics

Insider mass y; € [0, 1] evolves by free entry according to (24) (or the logit map (23)).
Prices are linear in signals with depth A\;(u;) = a;/®; and weights that tilt toward the
private signal as u; rises. The certainty-equivalent gain from becoming informed admits

the reduced form

ACE () = fyp(p) Me(p)? — Foa(p) M(p) + roa(p), (26)

with strictly positive coefficients built from signal precisions and noise-trade variance.
Proposition 7?7 establishes that ACEy(p) is strictly decreasing and continuous on [0, 1].
As insiders enter, ®; = pp + pp— + fps: increases, so Ay = A; /P, falls and price loads
more heavily on s;. Both effects compress the mean-squared pricing error that underlies
ACE; in (28). Entry thus reduces the private informational rent until (??) equilibrium is
restored. The application as well as implications of this for short-horizon price covariances

are interesting though. From (I3), we have

o5,

En = (205t)\t_ﬁt))‘; + 0‘7/5)‘3_52% . (27)

impact channel (X} <0) reweighting toward s

13



Phase path: S(p) under endogenous entry
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Figure 5: Phase path S(p) under endogenous entry. The economy travels from the initial (19, So) to the
free-entry fixed point (u*,S(u*)), illustrating the hump-shaped relation between informed participation
and short-run predictability.

When g is low (i.e. in the case of thin markets), \; is large and learning dominates,

95¢

o > 0. When g is high, \; is small and both reduced impact and public-weight

SO

reallocation dominate, giving %—% < 0. Hence S;(p) is unimodal and, in steady state and

equals Sy(p7). This has some important implications. First, lower information cost r;

2

. e ot . . .
increases participation (a%i < 0). Next, higher noise-trade variance o,

raises mispricing

ouy
803 .

(via K14), SO > (. Then higher private precision ¢ raises AC'E; directly but deepens
the market (reducing \;); the net effect on u} and on S;(p) is a priori ambiguous. This
finally leads to tighter risk-bearing a; both raises A; and scales down the CARA certainty
equivalent; the sign of g—‘g is parameter-dependent. Figure B plots ACE;(u) with the
free-entry threshold x and identifies p*.

The phase diagram in §?7 traces the implied path of S;(u) and shows its steady-state

level Sy(p*). Figure @ illustrates how temporary increases in noise-trader variance (o7 ,)
2

-, raises the value of
’

endogenously shift informed participation. A transitory spike in o

14



private information for a given insider mass p;, prompting additional entry so that i1
rises. As participation deepens, market depth rebuilds (price impact Ay = a;/®, falls),

informational rents compress, and j; mean-reverts toward the free-entry fixed point p*.®
4.5. Scenario 1: Shock-Driven Entry Dynamics

To illustrate the momentumcrash ecology under noise shocks, we simulate a discrete-time

version of our model with the following parameter values:

Table 1: Parameter values for Scenario 1 simulation

Parameter Symbol Value
Signal precision coefficient oY) 1.0
Price adjustment coefficient Op 0.5
Inventory sensitivity 0s 1.0
Market depth scaling a 1.0
Feedback strength K 0.05
Decay rate n 0.7
Exit/entry friction 4] 0.05
Initial informed participation 140 0.30
Baseline noise variance o? 1.0

We impose an exogenous volatility shock at period ¢t = 10, which lasts for five periods and
multiplies the noise variance agi by a factor of 4. This generates temporary instability
in participation and price impact, followed by endogenous recovery.

Figure B reports four panels: (i) the path of noise variance o2, (ii) the participation share
i, (iii) the price impact (inverse depth) A, and (iv) the short-horizon return covariance
Sy = Cov(Ry, Ri11). The dashed vertical lines mark the beginning and end of the shock
episode.

Proposition 4.3. Let u* solve the freeentry condition ACE(u*;0%) = k, where

NP (Var<mps — P(n)  Var(m, - P(u))) |

= 24 Var(0 | p, s) Var(6 | p)
the equilibrium price is linear P(u) = A(u)s + B(p)p + M)z with

KOs

A(p) = S0

M) = () = ¢p + ¢p + s,

8See the Law of Insider Motion and the figure caption for the entry response and mean reversion.
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Figure 6: Shock-driven entry dynamics. A volatility shock at ¢ = 10 increases ag’t, triggering a rise in
¢ and transient amplification of price impact A; and short-run covariance S;. The system subsequently
reverts toward its stable equilibrium.

and the posterior variances satisfy Var(0 | p,s) = (¢g + ¢p + ¢5) 1, Var(6 | p) = (¢ +
¢,)"*. Then the partial derivative of the freeentry insider mass with respect to noisetrader
variance admits the closed form

ou* a® ®(u*) 50

002 20, |(¢y + ¢0)%02 + 6202 + a’0?
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Shock to noise-trade variance: endogenous |1 t response
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Figure 7: Shock to noise-trader variance and insider entry. A temporary spike in o2 (shaded) raises the
value of information, prompting additional entry and a higher pu;y1; after the shock, p reverts toward
w* as depth rebuilds.

Appendix A. Backward Induction Results

This appendix derives the linear pricing rule and the adjacent-horizon pricereturn covariances
by backward induction under the CARANormal assumptions in the main text. Let the
terminal payoff be realized at t = 5 so P; = 6. Signals are Gaussian and independent
across sources and dates: p- =0+ (-, s =0+ 1, 2 ~ N(0, af’t). We write precisions
¢g = Var(0)™, ¢,,- = Var(¢-)", ¢s, = Var(r;) !, and cumulative precision mass

Dy = o+ > i + D ok Dok (A1)

k<t k<t

while defining the public weight ;- = ¢, /(9 + ¢p:-) and (when used) the posterior
variances Var(f | pi-) = (¢o + ¢pi— )", Var(0 | pi-, s:) = (9o + dpi— + dsi)
Starting on the backward induction process, at ¢ = 4 agents trade one last time before
P; = 0. CARANormal and competitive price taking imply myopic demands for an agent

with information H € {F,-, 74},

El¢ | H] — Py
X = —
«(H) ay Var(6 | H)
Here F,- = o(ps-) which is public information and Zy = o(ps-, s4) which is insider
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Shock to noise-trade variance: short-horizon covariance
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Figure 8: Shock to noise-trader variance and short-horizon covariance. During the o2 spike (shaded)
inventory pressure dominates and S; becomes more negative (stronger reversal). As entry deepens
markets post-shock, S; relaxes back toward S(u*).

information. With a fraction u4 informed, market clearing gives

E[0 | pa-, 54] — Py
*ay Var(6 | pa-, s4)

E[0 | ps-] — Pu
ag Var(0 | ps-)

+ (1 = pa)

Solving for P, and inserting conjugate Normal posteriors yields the linear rule

— ¢p,4*

A4 — M4 ¢$,4 @ 7
4

(e2]
N\ =
@4 ) 4

Py = agsq+ Baps- + M 24, By =3,
4

(A.3)

Let wealth evolve as Wiy = W, + x4 (Py1 — P,), and define one-step return Ryyq =
P,.1 — P,. Write F; for the agent’s information set at t.

Lemma Appendix A.1 (Stagewise optimality (myopia)). Under Assumption 21, the
Bellman problem at time t reduces to a one-period meanvariance trade:

m

* a 2 _ t _ _

T, = argH}thiX {xtmt — ;Utl't} = a 1}’ mt:Et[RHl], (0 :Vart(Rt+1).
[

In particular, with terminal payoff Ps = 6 and linear pricing in the main text, m; =
E.[0] — P, and v, = Var,(0), yielding

_ E0] - P,
a; Var,(0)

Proof of Proposition. Consider the Bellman equation with continuation value summarized

18



by the future optimized gains H, ., = >4 _, 1 Tp Ry

VWi, ) = max B = exp = ao(Wi + oot + Hopa) |

(CARA additivity.) Factor out wealth:

V;(Wt, Ft) = —e_atWt Hgn Et {exp{ — Ay (iEthH + Ht+1)}

(Exogenous opportunities.) Under price taking and exogenous information, Hyyq is
independent of x; conditional on F;. Hence the x;-problem is

: —atxt Rt
min E; [e t } .
(Gaussian certainty equivalence.) Since Ryi1 | Fy ~ N (my, vy), its mgf gives

—arxt R _ 1.2, .2
E, [e tat z+1] — exp{ — apxymy + Qat:vtvt}.

Maximizing expected utility is thus equivalent to maximizing the certainty equivalent®
Tymy — %vtxf, with FOC m; — ayvizy = 0 and SOC —auvy < 0, yielding x} = my/(avy).
Under the papers payoff structure, m; = E;[f] — P, and v; = Vary(), completing the

proof. Il

Proof of Proposition B. Assume for some t € {2, 3,4} that the equilibrium price at date
t is linear as in (A=3) with ¥, = ¢4/ @i, U = ¢pi-/Pr, Ay = ay/Py. We show it implies
the same structure at t—1 and delivers the adjacent-horizon covariance. At ¢t—1, informed
and uninformed demands are, respectively,

E[Q | Pi-1-» St—l] - Py

X, = , Ad

B e Var(0 | pa—1)-,5¢-1) (A4

(A.5)

E[9 | p(t—l)*] - P
Xyl = ) A6
U e Var( ] py ) A0
Market clearing is given by

pe—1 X141+ (L= pre—1) X1 + 221 =0 (A.7)

9ntertemporal hedging demands arise when current positions covary with future changes in the
opportunity set. Here, the state that governs opportunities is the belief about 6, which evolves only via
exogenous future signals; with CARA and Normality, the value function is exponentialaffine in wealth
and introduces no cross terms that couple z; to the law of future states. Myopia can fail if (a) trades
have price impact that feeds back into future coefficients, (b) the information flow is endogenous to
order flow, (c¢) utility is non-CARA or shocks are non-Gaussian, or (d) there are priced state variables
(time-varying drifts/vols) that are correlated with returns and affected by .
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produces

Py = Vg5 1+ Q1 pe—ny- + N1 21 (A.8)
(A9

Hi—1Ps i1 Qsp,(tfl)* Qg1
U, =——r% Q=2 A = A.10
t—1 @t_l ) t—1 (bt_l ) t—1 q)t_17 ( )

with
Sy =Pp+ D> Ppp- + > P (A.11)
k<t—1 k<t—1

Thus the linear form and the depth/impact identity A;_; = a;_1/®;_; propagate backwards.
Write the price at any u < 4 as P, = (¥, + Q)0+ V7 + Q0 Cu- + Ay 2y, using s, = 047,
Pu- = 0 4+ (,~. We define one-step returns R, = P,.1 — P,. For the last interior step
t=3 (SOth&t R4:P5—P4:9—P4),

R3 == {(\IJ4+Q4) — (Wg-’-Qg)}@ + \I/4T4+Q4C47 +A424 — \Png—QgCgf —A323,
Ry = {1— (\1/4—1—94)}9 — Wy — UG- — Mgz

Independence across dates and shocks implies only terms sharing the same innovation
survive in Cov(R3, Ry) given as

Cov(Rs, Ra) = [(Wa+Q4) — (W5+Q3)| |1 = (Wa+Qu)| Var() — W3 Var(ry) + Qf Var(¢y-) + Af o2,

fundamental block price-pressure (inventory)

(A.12)

An identical calculation gives, for a generic interior pair (¢,¢ + 1) gives us,

Cov(Ri, Ris1) = |(Wesr+ Q1) = (Ur4Q0) | [ (P04 Q2) = (Vi1 + Q)| Var(0) =07,  Var(ri41) -7, Vau
(A.13)
Obtaining closed form expressions for covariances yields the compact quadratic in impact™

1— s - Qs

Cov(Rs, Ry) = (”3< /~‘3)(<¥; 3+ dps) 033) A2 MR N (A.14)

a ’ a

3 3

a3 33
with Q3- = d);jfg* , which is the Lambda Law stated in the paper for the last interior

37

step. ]

For a non-terminal interior pair (¢,¢ + 1), (BEL3) is the primitive expression. When ¢ + 2 is close
to terminal or receives only payoff news, the first term simplifies exactly as above and collapses to the
quadratic in Ag.

20



Proof of -3. By independence of (p, s, z) and linearity,

Var(mys — P) = (ws — A)?0? + (w, — B)QO'; + N0, (A.15)
Var(m, — P) = (v, — B)*0; + A0 + N07?. (A.16)

With ®(u) = g + ¢, + 1ps, compute

(I)’('u> = Ps

! _ aPs
”m"?wi:
/ _ Ps\Po T Pp
w2
P = =5

where ®(p) = @g + pp + pps. and O(p) = wo + @, + pps with w,, wy, and w, are
constants. With

Var(mys — P) = (ws — A)?02 + (w, — B)*0) + N0 (A.17)
Var(m, — P) = (&, — B)*0, + A% + N°02, (A.18)
we obtain
0 2¢p 2a%p
9 Var(my, — P) = — %= = Ao+ (B 2}— 52
aﬂ ar(mp ) @(M)Q |:(§09 + SOP)(U) )Us + (Pp( wp)ap CI)(,U)?’ 0
(A.19)
0 20, . 9 2} 2a%ps
—V —P)= - B A - ) A.20
8u ar(mp ) (I)(M)Q |:¢P(wp )Jp + (()09 + Spp) Os (ID(,U)?’ 0, ( )

where the first derivative is strictly negative on [0,1), while the second is a priori
signindeterminate. Since the posterior variances are constants,

IACE(u) _ ¥ 2 2 2 2 2
o = et e = 200) (9 +90) — o — ao (A21)

2
- o 3{(%0p+%09)20§ + @roy + aQUf} < 0. (A.22)
a (o + ¢y + 2s)

Thus Cm%f(“ ) < 0 for all p € [0,1), with continuity at u = 1 by continuity of loadings.
This shows strict monotonicity and continuity. Since AC'E(u) is strictly decreasing and
continuous on [0, 1], the scalar equation ACE(u*) =  has at most one interior solution.
Existence of an interior solution is ensured whenever ACE(0) > k > ACE(1); otherwise

a corner p* € {0,1} obtains. O

Proof. By linearGaussian pricing, the two meansquared pricing errors contain the common

noisepressure term \(p)%o?:

Var(mps — P) = -+ + \02, Var(m, — P) = -+ \0o2,
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Hence OACE/0c? (with fixed p ) is

: :
et (Var(g 75 " Ve p>> (429)
= 2160+ 0000~ G0+ 00) (A24)
- L, (A.25)
= @%2 : ;ba (A.26)
- (‘I‘)Eﬁ;)? (A.27)

(ii) Slope in p. Appendix A yields

8ACE__¢782 1
o a o)

{(6p +60)%0° + 0207 + %0} <0 for all u € [0,1).

(iii) Implicit Function Theorem. Differentiating the freeentry condition ACE(u*, 0?) = k
w.r.t. 02 (holding r fixed) gives

8ACE( “
OACE . 0w ONCE . Ot 0o 8
o a0z Taer T 902~ OACE, .
o )
Substituting the expressions from (i)(ii) and simplifying:
a ¢s

our 20 (pr)? B a® ()
do2 ¢ 1 N 2,52 252 4 1252
: Q;@(M*)g{(¢p+¢9)20—§+¢30'}2)+a20'§} 2¢S {(¢p+¢€> 95 —|—<z5pap—i—a O-Z}

Positivity follows because the numerator and the bracketed denominator term are positive.
O O
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