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Abstract

We develop a dynamic insider trading model of markets where informed participation

and price impact are jointly determined. In a CARA Normal rational expectations

environment, equilibrium prices are linear in private and public signals as well as noise-

trader order flow. We derive closed form expressions for adjacent horizon return covariances,

showing that short-horizon predictability follows a quadratic “Lambda Law” in market

impact - thin markets (high λ) generate strong reversals, while sufficiently strong learning

regimes can produce short-run momentum. We extend the framework by endogenizing

insider entry. The certainty-equivalent gain from private information is strictly decreasing

in insider share, yielding a unique free-entry fixed point where informational rents are

competed away. This “Law of Insider Motion” formalizes the feedback between profitability,

entry, and market depth: shocks to noise-trader variance or information cost displace

insider mass, but participation dynamics restore stability. Our model links microstructure

features to return autocovariances and highlights conditions under which momentum,

reversal, and fragility arise endogenously.
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1. Introduction

Briefly explain the motivation, literature, and main contribution.

2. Model

2.1. A simple two-period model

In the spirit of the rational expectations general equilibrium models of Hellwig(1980) and

Grossman and Stiglitz (1980), we consider a setup with with time periods t ∈ {1, 2, 3}

with liquidation value and terminal payoff at t = 4 given by V = θ ∼ N (0, σ2
θ). 1 The

risk-free rate is normalized to 0 and the unconditional mean of θ is normalized to 0 (see

footnote on normalization). A fraction µ ∈ (0, 1) of traders are informed, 1 − µ are

uninformed, and noise traders submit exogenous order zt ∼ N (0, σ2
z) at t = 2. Traders

are CARA with coefficient a > 0 and maximize U(W ) = − exp{−aW}.At time t = 1,

there is a public signal p = θ + ζ observed by all market participants and at time t = 2,

a priate signal s = θ + τ observed only by the insider with (θ, ζ, τ) jointly independent

Gaussian, mean zero, and variances Var(θ) = σ2
θ , Var(ζ) = σ2

p, Var(τ) = σ2
s

2. Let the

corresponding precisions be ϕθ = σ−2
θ , ϕp = σ−2

p , ϕs = σ−2
s . The equilibrium price at time

t = 3, is trivial, i.e. P3 = θ.For all t < 3, we solve for the equilibrium prices through

backward induction. Agents have CARA preferences and maximize end period utility

over wealth Ui,t = exp −AWi,t. Hence, the corresponding CARA-normal demands of the

agents can be given as

XU,2 = E[θ | p] − P2

aVar(θ | p)
, (1)

XI,2 = E[θ | s] − P2

aVar(θ | s)
. (2)

1Without loss of generality we set the unconditional mean of θ to 0 (and the risk-free rate to 0).
In a CARANormal setting with Gaussian signals, any nonzero mean mθ = E[θ] can be absorbed by
demeaning θ̃ = θ − mθ, p̃ = p − mθ, and s̃ = s − mθ. All our results hold promise even if this assumption
is relaxed

2We work on a filtered probability space (Ω, F , {Ft}4
t=0,P) supporting a jointly Gaussian vector

(θ, ζ, τ, z2) ∼ N (0, Σ) with θ ⊥⊥ ζ ⊥⊥ τ ⊥⊥ z2, Var(θ) = σ2
θ , Var(ζ) = σ2

p, Var(τ) = σ2
s , Var(z2) = σ2

z .
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Results from the projection theorem give us

E[θ | p] = ϕp

ϕθ + ϕp

p, Var(θ | p) = 1
ϕθ + ϕp

, (3)

E[θ | s] = ϕs

ϕθ + ϕs

s Var(θ | s) = 1
ϕθ + ϕs

. (4)

Market clearing and pricing rule:. Market clear when agents’ demands are met, giving

us the clearing rule

µXI,2 + (1 − µ)XU,2 + z2 = 0 (5)

We conjecture a linear price P2 = α2s + β2p + γ2z2. Solving for the clearing conditon

yields3

P2 = α2 s + β2 p + γ2 z2 with



α2 = µ ϕs

Φ2
,

β2 = (1 − µ) ϕp

Φ2
,

γ2 = a

Φ2
,

(6)

Φ2 ≡ ϕθ + µ ϕs + (1 − µ) ϕp. (7)

Assumption 2.1 (CARANormal, competitive, exogenous information). (i) Agents have
CARA utility Ut(w) = − exp{−atw} with at > 0; (ii) (θ, {ζt−}, {τt}, {zt}) are jointly
Gaussian with the standard independence restrictions stated in the main text; (iii) Agents
are price takers and the information flow is exogenous (today’s position does not affect
the law of future signals or prices other than through wealth).

Equilibrium at t = 1.. At t = 1 both informed and uninformed observe only the public

signal p = θ + ζ. Let z1 ∼ N (0, σ2
z) be the noise order at t = 1. With symmetric

information, the aggregate demand of both class of traders is given as

XI,1 + XU,1 = E[θ | p] − P1

aVar(θ | p)
. (8)

Hence the linear pricing rule4

3If E[θ] = θ̄ ̸= 0, add an intercept ϕθ

ϕθ+µϕs+(1−µ)ϕp
θ̄ to (7).

4If E[θ] = θ̄ ̸= 0, add ϕθ

ϕθ+ϕp
θ̄ to P1.
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P1 = β1 p + γ1 z1 with


β1 = ϕp

Φ1
,

γ1 = a

Φ1
,

(9)

Φ1 ≡ ϕθ + ϕp. (10)

2.2. Short- and Intermediate-horizon Covariances

Throughout this subsection we use the pricing rules in (7) and (10), the signal definitions

s = θ + τ and p = θ + ζ, and the mutual independence and mean-zero assumptions for

(θ, ζ, τ, z1, z2). We also assume Var(z1) = Var(z2) = σ2
z and z1 ⊥⊥ z2. We now define

the one-period returns R1 ≡ P2 − P1 and R2 ≡ P3 − P2 = θ − P2, and the two-period

intermediate horizon return R1,3 ≡ P3 − P1 = θ − P1.

Proposition 2.2 (Short and intermediate-horizon return covariances). Under the information
structure s = θ + τ , p = θ + ζ, with mutually independent, mean-zero (θ, τ, ζ, z1, z2) and
variances Var(θ) = σ2

θ , Var(τ) = σ2
s , Var(ζ) = σ2

p, Var(zt) = σ2
z , let precisions be

ϕθ = σ−2
θ , ϕs = σ−2

s , ϕp = σ−2
p . With P2 = α2s + β2p + γ2z2 and P1 = β1p + γ1z1 the

one-lag (short-horizon) and short-vs.-two-period (intermediate-horizon) covariances are
given to be 5

S = Cov(R1, R2) =
µ(1 − µ)

(
ϕs + ϕp

)
Φ2

2
− µ ϕp

Φ1 Φ2︸ ︷︷ ︸
fundamental (information)

+
(

− a2

Φ2
2

σ2
z

)
︸ ︷︷ ︸

inventory (order flow)

(11)

L = Cov(R1, R1,3) = µ ϕs

Φ1 Φ2︸ ︷︷ ︸
fundamental (information)

+ a2

Φ2
1

σ2
z︸ ︷︷ ︸

inventory (order flow)

. (12)

Information is an industry with free (or at least elastic in the real sense) entry. When

short-horizon trading profits attributable to private signals are abundant, more capital

pays the fixed and variable costs of becoming informed , i.e. buying data, talent,

and technology which is exactly the competition mechanism emphasized by ? ]. As

informed participation expands, prices incorporate the private signal sooner and more

completely; market depth increases and price impact falls, so the incremental value

of information is competed away see [? ? ]. This crowding logic delivers a natural

negative feedback. Profits naturally attract entry; entry raises informational depth; depth

5For proof, see
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compresses profits. We have reason to belive that this same mechanism organizes short-

horizon return patterns. With few informed traders, new private information diffuses

slowly and produces return continuation a.k.a momentum as prices learn across periods.

As informed participation grows, two forces push back, namely (i) public-signal repricing

meaning later trades re-weight away from yesterdays public signal toward todays private

signal. (ii) Inventory pressure that is later unwound. We show that together they

generate a hump in short-run predictability: momentum at intermediate informed share;

mean reversion when informed trading is heavy, consistent with asymmetric-information

microstructure accounts of return autocorrelation [e.g., ? ]nd with the broader link

between liquidity and expected returns as documented by [? ]. Especially in stressed

states, when funding constraints bind or noise-trader activity is elevated, temporary

impact rises and short-horizon reversals strengthen with the classic funding-liquidity

spirals and loss spirals as shown by ? ] and the momentum crash narrative in ? ].

Real-world episodes often fit this loop. Alternative data waves and newer advanced

analytics create an early adopter edge; rapid diffusion across funds compresses that edge

as prices internalize the signal (with depth up and correspondingly impact down). Around

scheduled disclosures (for example earnings, macro prints), order flow is more aligned with

fundamentals, so short-run predictability temporarily rises before being competed away

by subsequent entry and deeper markets (cite papers). Regulatory and technology shocks

for e.g., research unbundling, market-structure changes, and algorithmic adoption shift

costs, depth, and impact in the directions as documented by ? ? ? ]. Empirically,

informed participation can be proxied by the Probability of Informed Trading (PIN)

and related measures [? ? ]. Price impact can be estimated by intraday Kyle/Hasbrouck

estimates or by the method used by Sadka(2006) originally incorporating the fundamental

determinants of the bid-ask spread as proposed by Glosten and Harris(1988).

3. Dynamic Model

For our model, we consider a T-period version of the previous section with dynamic

insider entry. Time is discrete, t = 1, 2, . . . T , with terminal payoff PT = θ. Agents are

competitive CARA utility maximizers with period t risk aversion at > 0. At each trading
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Figure 1: Learning-helped regime (αt > 0). The short-horizon covariance S(λ) is quadratic in λ with a
unique minimum at λmin = βt/(2αt) and a sign flip at λ0 = βt/αt. The dashed line marks the structural
impact λ = a/Φ, which determines the realized regime.

date t < 5 (a) A public signal pt− = θ + ζt− is observed by all, where “t−” denotes the

most recent public update prior to trade t. (b) A fraction µt ∈ [0, 1] of traders observe

a private signal st = θ + τt. (c) Non-informational order flow or noise is zt ∼ N (0, σ2
z,t),

independent across t and of (θ, ζt− , τt). Let the prior be θ ∼ N (θ̄, σ2
θ) with precision

ϕθ = σ−2
θ . We denote signal precisions by ϕp,t− = Var(ζt−)−1 and ϕs,t = Var(τt)−1. Now,

define cumulative (posterior) precision mass at t

Φt ≡ ϕθ +
∑
k≤t

ϕp,k− +
∑
k≤t

µk ϕs,k. (13)

In line with Luo, Subramanyam and Titman (2022) who use the loadings on the noise

trader component as a measure of liquidity, we use this Kyle’s lambda 6 as a measure of

liquidity

6The IMFs 2022 liquidity stress-testing framework states directly: Liquidity is also measured as the
price impact of trading. Kyles lambda measures the price impact of net trading activities. This is used
to diagnose and compare market liquidity across assets and time.
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Figure 2: Noisedominated regime (αt ≤ 0). S(λ) is negative for all λ > 0, so short-run returns exhibit
reversal throughout. The dashed line shows the structural λ = a/Φ.

3.1. Short-Horizon Predictability - The “Lambda Law”
Proposition 3.1 (Price and Impact). Under CARANormal and competitive price taking,
the periodt equilibrium price is linear in sufficient statistics

Pt = αt st + βt pt− + λt zt, λt = at

Φt

, (14)

with loadings αt = µt ϕs,t

Φt
, βt = ϕp,t−

Φt
. Impact λt is the slope as shown in Kyle(1985) and

market depth is defined as 1/λt = Φt/at.

Proposition 3.2 (Lambda Law). The short-horizon autocovariance in the previous subsection
at time t decomposes as

St ≡ Cov(Rt, Rt+1) =
(

µt(1 − µt)(ϕs,t + ϕp,t−)
a2

t

− σ2
z,t

)
︸ ︷︷ ︸

αt

λ2
t − µtβt−

at︸ ︷︷ ︸
βt

λt (15)

βt− ≡ ϕp,t−

ϕθ + ϕp,t−
. (16)

Here λt is the price impact as in Kyle(1985) the bigger λt, the more price moves when

a given amount is traded, which is another way to say the market is thinner and less

liquid. The coefficient αt weighs the strength of learning or how much prices can move

toward fundamentals because informed and uninformed traders bring genuine information

into the market. this is against the drag from noise trading and inventory pressure,
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summarized by σ2
z,t. The coefficient βt measures a purely mechanical reweighting force

- after a public signal arrives, the next trade partially undoes that move as prices lean

more on fresher private information, which tends to create short-run reversal. This leads

to two important phenomenon which we discuss further.

3.1.1. Noisy Reversals

When αt ≤ 0, noise and risk-bearing constraints outweigh the informational pull toward

fundamentals. In such a case , St(λt) < 0 for every λt > 0. Intuitively, even in already

deep markets (small λt) any marginal rise in impact makes short-run reversal stronger

because the first-order effect of trading is to reweight away from yesterdays public signal;

mathematically, S ′
t(0) = −βt < 0. As liquidity thins further (larger λt), the inventory

component grows quadratically and pushes St more negative, producing the well known

snap-back behavior typically seen in stressed markets (see for example Brunnermeier and

Pedersen, 2009)

3.1.2. Learning Regime

When αt > 0, learning is strong enough to counter some of the impact drag. Thus, the

quadratic opens upward and has a unique point of most reversal at

λt,min = βt

2αt

, St(λt,min) = − β2
t

4αt

< 0, (17)

and a unique sign flip at

λt,0 = βt

αt

. (18)

For impacts below λt,0, the reweighting force dominates and short-run returns tend to

reverse (St < 0). Beyond λt,0, learning dominates and short-run continuation (in other

words, momentum) appears (St > 0). Economically, getting to the right-hand side usually

requires either unusually strong and timely signals (high ϕs,t with a balanced insider share

µt) or unusually thin markets; However, in many settings the feasible λt never reaches that

region. The impact that actually prevails is pinned down by depth, λt = at/Φt, where

Φt = ϕθ +∑k≤t ϕp,k− +∑k≤t µkϕs,k. The realized regime is therefore determined by where

this structural λt sits relative to λt,min and λt,0. Policies or technologies that deepen

markets (larger Φt or smaller at) shift λt left and make reversal more likely; stronger
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private information or a more balanced insider share raise αt and move the thresholds,

potentially softening reversal even without changing traded volumes. 7

4. Insiders Attract Insiders : Dynamic Informed Entry

In the previous section, public signals are already baked into prices, so any advantage

from them is mostly competed away(due to market efficiency) which means whats left

comes from the market not being perfectly responsive at every moment. Relative to a

public signal, a private signal confers two distinct benefits (i) it provides a higher precision

estimate of the fundamental value to the observing agent and (ii) it simultaneouly provides

a transient oppurtunity to trade before prices fully internalize (see limits to arbitrage).

The latter arises as depth is finite and random non-informational order flow keeps prices

slightly deviated from their conditional expectation. To add on, with a positive price

impact, mean squared pricing errors should be strictly positive meaning an accurate

posterior can be profitably deployed. We attempt to endogenize this phenomenon by

allowing for dynamic insider participation. Agents become informed when the certainity

equivalence between private and public-only forecasts is positive. Hence, insiders are

incentivised to enter. Entry raises the mass of informed traders and increases the effective

depth (thereby lowered price impact) and tilts price loadings towards private signals

thereby paradoxically reducing the certainity equivalence. This, shrinks the information

rent. In our model, the value of being informed at date t is precisely the increase in

certainty equivalent from replacing a public-only posterior with a public-plus-private

posterior while holding the same equilibrium price fixed. We find the certainty equivalent

to be quadratic in forecast error and yielding a closed-form.

4.1. Exclusivity Rent of Private Signals
Proposition 4.1 (Certainty Equivalent Gain). Let mps,t ≡ E[θ | pt− , st] and mp,t ≡ E[θ |
pt− ]. With the equilibrium pricing rule Pt = Ψtst + Ωtpt− + Λtzt, Ψt = µtϕs,t

Φt
, Ωt =

ϕp,t−

Φt
, Λt = at

Φt
, the per-capita certainty-equivalent gain from being informed is

∆CEt(µt) = 1
2At

E
[
( mps,t − Pt )2

]
Var(θ | pt− , st)

−
E
[
( mp,t − Pt )2

]
Var(θ | pt−)

 . (19)

7When comparing to data, recall that the feasible impact is typically constrained by the structural
value λt = at/Φt; the realized regime is determined by the location of λt relative to λt,min and λt,0.

9



The numerators in (19) are mean squared pricing errors under the two information sets,

averaged over the unconditional law of (θ, ζt− , τt, zt). The denominators rescale by the

remaining payoff risk under each information set, reflecting the certainty equivalence.

Substituting Ψt, Ωt, Λt and the posterior variances Var(θ | pt− , st) = (ϕθ + ϕp,t− + ϕs,t)−1

and Var(θ | pt−) = (ϕθ + ϕp,t−)−1 yields a reduced form in the impact parameter:

∆CEt(µt) = κ1,t Λ2
t − κ2,t Λt + κ0,t, (20)

with the parameters given by

κ1,t = ϕs,t

2 a3
t ϕθ

(
a2

t ϕθ σ2
z,t + µ2

t ϕ
2
s,t + µ2

t ϕs,tϕθ + 2µt ϕs,tϕp,t− + ϕ2
p,t− + ϕp,t−ϕθ

)
(21)

κ2,t = ϕs,t

a2
t ϕθ

(
µt ϕs,t + µt ϕθ + ϕp,t−

)
(22)

κ0,t = ϕs,t

2 at ϕθ

(23)

A conveinient way to read the closed form expression is to map each term to its distinct

source of informational rent. First, the quadratic component captures the variance of

mispricing. This is because in particular, κ1,t is linear and scales in the variance of noise

trading. In contrast, the linear term in lambda, reflects the predictable repricing away

from the public weights. In equilibrium, κ1,t and κ2,t are strictly positive functions of

signals precisions and vanish as depth becomes infinite. Hence, under the regularity

conditions of non-degenerate noise trading and strictly positive precisions, the certainity

equivalence ∆CE is strictly decreasing on [0, 1]. Hence, private information yields the

largest rent when few agents are informed and as the entry crowds, the signal into price

deepens the market.

4.2. Law of Insider Motion

Classical models of informed trading have long emphasized the impact of insiders on prices

and liquidity, but often treated their presence as fixed. For example, Kyle (1985) studied

the case of a monopolistic insider facing competitive market makers, while Glosten and

Harris (1988) showed how market makers update beliefs and set impact coefficients as

a function of order flow. Holden and Subrahmanyam (1992) extended such analysis to

multiple insiders, demonstrating that competition among informed traders erodes their
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informational rents. Yet in all of these frameworks, the number of insiders is taken as

exogenous.

Our approach departs from this tradition by endogenizing the population of informed

traders. We model insider entry as a dynamic response to profitability. At date t, suppose

a fraction µt of traders are informed. Each insider earns a certainty-equivalent gain

∆CEt(µt). When ∆CEt(µt) > κt, where κt denotes the cost of acquiring and deploying

private information, new entrants are drawn into the market; when ∆CEt(µt) < κt, some

insiders exit. Instead of assuming a fixed cross-section of beliefs, we endogenize the entry

and exit of insiders as a function of informational rents.This generates a simple feedback

mechanism

µt+1 = Π[0,1]

{
(1 − δ) µt + η

[
∆CEt(µt) − κt

]
+

}
, δ ∈ (0, 1], η > 0, (24)

where [x]+ = max{x, 0} captures onesided entry, δ captures obsolescence/exit, η governs

the speed of capacity adjustment, and Π[0,1] projects onto [0, 1]. For settings where smooth

interior participation is desirable (e.g., heterogeneous costs or noisy adoption), a smooth

alternative that keeps µt+1 ∈ (0, 1) without truncation is the logit map

µt+1 = 1
1 + exp

(
− γ [∆CEt(µt) − κt]

) , γ > 0, (25)

which encodes the same economics: profits attract entry; entry deepens markets and

competes those profits away by lowering impact λt = at/Φt and tilting prices toward

st.Figure ?? illustrates how shocks to noise trader variance drive this adjustment process.

In the Kyle (1985) framework, noise variance determines the camouflage available to

insiders: when variance is high, insiders can trade more aggressively under the cover of

noise, raising their informational rents; when variance is low, their trades become more

transparent, compressing rents. In our model, these shocks play the role of perturbations

to the insider ecology.

A positive shock to noise variance raises ∆CEt(µt) above cost, triggering entry and an

upward drift in µt. Conversely, a negative shock lowers rents below cost, inducing exit.

The “Law of Insider Motion” thus acts as a stabilizing force: shocks displace the insider
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Figure 3: Certaintyequivalent gain from being informed, ∆CEt(µ), as a function of insider mass µ. The
solid line shows the decreasing informational rent as participation deepens and price impact falls. The
dashed line denotes the fixed information cost κ, and their intersection identifies the unique freeentry
equilibrium µ⋆.

population from µ∗, but the feedback mechanism of entry and exit pulls the system back.

4.3. Fixed point and stability
Proposition 4.2 (Monotone value of information and free entry). Let θ ∼ N (0, σ2

θ),
p = θ + ζ with ζ ∼ N (0, σ2

p), s = θ + τ with τ ∼ N (0, σ2
s), and z ∼ N (0, σ2

z) mutually
independent. Fix date t and suppose the competitive price is

P (µ) = A(µ) s + B(µ) p + λ(µ) z, A(µ) = µ φs

Φ(µ)
, B(µ) = φp

Φ(µ)
, λ(µ) = a

Φ(µ)
,

where φθ = 1/σ2
θ , φp = 1/σ2

p, φs = 1/σ2
s and Φ(µ) = φθ + φp + µφs. Let mps = E[θ |

p, s] = wpp + wss with

wp = φp

φθ + φp + φs

, ws = φs

φθ + φp + φs

,

and mp = E[θ | p] = w̃pp with w̃p = φp

φθ+φp
. Define

∆CE(µ) = 1
2a

Var
(
mps − P (µ)

)
Var(θ | p, s)

−
Var

(
mp − P (µ)

)
Var(θ | p)

 ,

with Var(θ | p, s) = (φθ + φp + φs)−1 and Var(θ | p) = (φθ + φp)−1. Then ∆CE(µ) is
continuous and strictly decreasing on [0, 1]. Consequently, for any cost κ the freeentry
equation ∆CE(µ⋆) = κ admits at most one interior solution µ⋆ ∈ (0, 1) (with corner
solutions otherwise).
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Figure 4: Short-horizon covariance along the equilibrium entry path. As µt rises and impact λt = a/Φt

falls, St = Cov(Rt, Rt+1) moves along a single-peaked S(µ) curve and stabilizes at S(µ∗).

4.4. Free Entry and Participation Dynamics

Insider mass µt ∈ [0, 1] evolves by free entry according to (24) (or the logit map (25)).

Prices are linear in signals with depth λt(µt) = at/Φt and weights that tilt toward the

private signal as µt rises. The certainty-equivalent gain from becoming informed admits

the reduced form

∆CEt(µ) = κ1,t(µ) λt(µ)2 − κ2,t(µ) λt(µ) + κ0,t(µ), (26)

with strictly positive coefficients built from signal precisions and noise-trade variance.

Proposition ?? establishes that ∆CEt(µ) is strictly decreasing and continuous on [0, 1].

As insiders enter, Φt = φθ + φp,t− + µtφs,t increases, so λt = At/Φt falls and price loads

more heavily on st. Both effects compress the mean-squared pricing error that underlies

∆CEt in (26). Entry thus reduces the private informational rent until (??) equilibrium is

restored. The application as well as implications of this for short-horizon price covariances

are interesting though. From (15), we have

∂St

∂µ
= (2αtλt − βt)λ′

t︸ ︷︷ ︸
impact channel (λ′

t<0)

+ α′
tλ

2
t − β′

tλt︸ ︷︷ ︸
reweighting toward st

. (27)
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Figure 5: Phase path S(µ) under endogenous entry. The economy travels from the initial (µ0, S0) to the
free-entry fixed point (µ∗, S(µ∗)), illustrating the hump-shaped relation between informed participation
and short-run predictability.

When µ is low (i.e. in the case of thin markets), λt is large and learning dominates,

so ∂St

∂µ
> 0. When µ is high, λt is small and both reduced impact and public-weight

reallocation dominate, giving ∂St

∂µ
< 0. Hence St(µ) is unimodal and, in steady state and

equals St(µ⋆
t ). This has some important implications. First, lower information cost κt

increases participation
(

∂µ⋆
t

∂κt
< 0

)
. Next, higher noise-trade variance σ2

z,t raises mispricing

(via κ1,t), so ∂µ⋆
t

∂σ2
z,t

> 0. Then higher private precision φs,t raises ∆CEt directly but deepens

the market (reducing λt); the net effect on µ⋆
t and on St(µ⋆

t ) is a priori ambiguous. This

finally leads to tighter risk-bearing at both raises λt and scales down the CARA certainty

equivalent; the sign of ∂µ⋆
t

∂at
is parameter-dependent. Figure 3 plots ∆CEt(µ) with the

free-entry threshold κ and identifies µ⋆.

The phase diagram in §?? traces the implied path of St(µ) and shows its steady-state

level St(µ⋆). Figure 7 illustrates how temporary increases in noise-trader variance (σ2
z,t)

endogenously shift informed participation. A transitory spike in σ2
z,t raises the value of
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private information for a given insider mass µt, prompting additional entry so that µt+1

rises. As participation deepens, market depth rebuilds (price impact λt = at/Φt falls),

informational rents compress, and µt mean-reverts toward the free-entry fixed point µ∗.8

4.5. Scenario 1: Shock-Driven Entry Dynamics

To illustrate the momentumcrash ecology under noise shocks, we simulate a discrete-time

version of our model with the following parameter values:

Table 1: Parameter values for Scenario 1 simulation
Parameter Symbol Value
Signal precision coefficient ϕθ 1.0
Price adjustment coefficient ϕp 0.5
Inventory sensitivity ϕs 1.0
Market depth scaling a 1.0
Feedback strength κ 0.05
Decay rate η 0.7
Exit/entry friction δ 0.05
Initial informed participation µ0 0.30
Baseline noise variance σ2

z 1.0

We impose an exogenous volatility shock at period t = 10, which lasts for five periods and

multiplies the noise variance σ2
z,t by a factor of 4. This generates temporary instability

in participation and price impact, followed by endogenous recovery.

Figure 6 reports four panels: (i) the path of noise variance σ2
z,t, (ii) the participation share

µt, (iii) the price impact (inverse depth) λt, and (iv) the short-horizon return covariance

St = Cov(Rt, Rt+1). The dashed vertical lines mark the beginning and end of the shock

episode.

Proposition 4.3. Let µ⋆ solve the freeentry condition ∆CE(µ⋆; σ2
z) = κ, where

∆CE(µ) = 1
2a

(
Var(mps − P (µ))

Var(θ | p, s)
− Var(mp − P (µ))

Var(θ | p)

)
,

the equilibrium price is linear P (µ) = A(µ)s + B(µ)p + λ(µ)z with

A(µ) = µϕs

Φ(µ)
, B(µ) = ϕp

Φ(µ)
, λ(µ) = a

Φ(µ)
, Φ(µ) = ϕθ + ϕp + µϕs,

8See the Law of Insider Motion and the figure caption for the entry response and mean reversion.
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Figure 6: Shock-driven entry dynamics. A volatility shock at t = 10 increases σ2
z,t, triggering a rise in

µt and transient amplification of price impact λt and short-run covariance St. The system subsequently
reverts toward its stable equilibrium.

and the posterior variances satisfy Var(θ | p, s) = (ϕθ + ϕp + ϕs)−1, Var(θ | p) = (ϕθ +
ϕp)−1. Then the partial derivative of the freeentry insider mass with respect to noisetrader
variance admits the closed form

∂µ⋆

∂σ2
z

= a2 Φ(µ⋆)
2 ϕs

[
(ϕp + ϕθ)2σ2

s + ϕ 2
p σ2

p + a2σ2
z

] > 0.
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Figure 7: Shock to noise-trader variance and insider entry. A temporary spike in σ2
z (shaded) raises the

value of information, prompting additional entry and a higher µt+1; after the shock, µt reverts toward
µ∗ as depth rebuilds.

Appendix A. Backward Induction Results

This appendix derives the linear pricing rule and the adjacent-horizon pricereturn covariances

by backward induction under the CARANormal assumptions in the main text. Let the

terminal payoff be realized at t = 5 so P5 = θ. Signals are Gaussian and independent

across sources and dates: pt− = θ + ζt− , st = θ + τt, zt ∼ N (0, σ2
z,t). We write precisions

ϕθ = Var(θ)−1, ϕp,t− = Var(ζt−)−1, ϕs,t = Var(τt)−1, and cumulative precision mass

Φt ≡ ϕθ +
∑
k≤t

ϕp,k− +
∑
k≤t

µk ϕs,k. (A.1)

while defining the public weight βt− ≡ ϕp,t−/(ϕθ + ϕp,t−) and (when used) the posterior

variances Var(θ | pt−) = (ϕθ + ϕp,t−)−1, Var(θ | pt− , st) = (ϕθ + ϕp,t− + ϕs,t)−1.

Starting on the backward induction process, at t = 4 agents trade one last time before

P5 = θ. CARANormal and competitive price taking imply myopic demands for an agent

with information H ∈ {F4− , I4},

X4(H) = E[θ | H] − P4

a4 Var(θ | H)
.

Here F4− = σ(p4−) which is public information and I4 = σ(p4− , s4) which is insider
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Figure 8: Shock to noise-trader variance and short-horizon covariance. During the σ2
z spike (shaded)

inventory pressure dominates and St becomes more negative (stronger reversal). As entry deepens
markets post-shock, St relaxes back toward S(µ∗).

information. With a fraction µ4 informed, market clearing gives

µ4
E[θ | p4− , s4] − P4

a4 Var(θ | p4− , s4)
+ (1 − µ4)

E[θ | p4− ] − P4

a4 Var(θ | p4−)
+ z4 = 0. (A.2)

Solving for P4 and inserting conjugate Normal posteriors yields the linear rule

P4 = α4 s4 + β4 p4− + λ4 z4, A4 = µ4 ϕs,4

Φ4
, B4 = ϕp,4−

Φ4
, λ4 = a4

Φ4
. (A.3)

Let wealth evolve as Wt+1 = Wt + xt (Pt+1 − Pt), and define one-step return Rt+1 ≡

Pt+1 − Pt. Write Ft for the agent’s information set at t.

Lemma Appendix A.1 (Stagewise optimality (myopia)). Under Assumption 2.1, the
Bellman problem at time t reduces to a one-period meanvariance trade:

x⋆
t = arg max

xt

{
xt mt − at

2 vt x2
t

}
= mt

at vt

, mt ≡ Et[Rt+1], vt ≡ Vart(Rt+1).

In particular, with terminal payoff P5 = θ and linear pricing in the main text, mt =
Et[θ] − Pt and vt = Vart(θ), yielding

x⋆
t = Et[θ] − Pt

at Vart(θ)
.

Proof of Proposition. Consider the Bellman equation with continuation value summarized
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by the future optimized gains Ht+1 ≡ ∑4
u=t+1 x⋆

uRu+1:

Vt(Wt, Ft) = max
xt

Et

[
− exp

{
− at

(
Wt + xtRt+1 + Ht+1

)}]
.

(CARA additivity.) Factor out wealth:

Vt(Wt, Ft) = −e−atWt min
xt

Et

[
exp

{
− at

(
xtRt+1 + Ht+1

)}]
.

(Exogenous opportunities.) Under price taking and exogenous information, Ht+1 is
independent of xt conditional on Ft. Hence the xt-problem is

min
xt

Et

[
e−atxtRt+1

]
.

(Gaussian certainty equivalence.) Since Rt+1 | Ft ∼ N (mt, vt), its mgf gives

Et

[
e−atxtRt+1

]
= exp

{
− atxtmt + 1

2a2
t x

2
t vt

}
.

Maximizing expected utility is thus equivalent to maximizing the certainty equivalent9

xtmt − at

2 vtx
2
t , with FOC mt − atvtxt = 0 and SOC −atvt < 0, yielding x⋆

t = mt/(atvt).
Under the papers payoff structure, mt = Et[θ] − Pt and vt = Vart(θ), completing the
proof.

Proof of Proposition 3.1. Assume for some t ∈ {2, 3, 4} that the equilibrium price at date
t is linear as in (A.3) with Ψt = µtϕs,t/Φt, Ωt = ϕp,t−/Φt, Λt = at/Φt. We show it implies
the same structure at t−1 and delivers the adjacent-horizon covariance. At t−1, informed
and uninformed demands are, respectively,

XI,t−1 =
E[θ | p(t−1)− , st−1] − Pt−1

at−1 Var(θ | p(t−1)− , st−1)
, (A.4)

(A.5)

XU,t−1 =
E[θ | p(t−1)− ] − Pt−1

at−1 Var(θ | p(t−1)−)
. (A.6)

Market clearing is given by

µt−1XI,t−1 + (1 − µt−1)XU,t−1 + zt−1 = 0 (A.7)

9Intertemporal hedging demands arise when current positions covary with future changes in the
opportunity set. Here, the state that governs opportunities is the belief about θ, which evolves only via
exogenous future signals; with CARA and Normality, the value function is exponentialaffine in wealth
and introduces no cross terms that couple xt to the law of future states. Myopia can fail if (a) trades
have price impact that feeds back into future coefficients, (b) the information flow is endogenous to
order flow, (c) utility is non-CARA or shocks are non-Gaussian, or (d) there are priced state variables
(time-varying drifts/vols) that are correlated with returns and affected by xt.
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produces

Pt−1 = Ψt−1 st−1 + Ωt−1 p(t−1)− + Λt−1 zt−1 (A.8)
(A.9)

Ψt−1 = µt−1ϕs,t−1

Φt−1
, Ωt−1 =

ϕp,(t−1)−

Φt−1
, Λt−1 = at−1

Φt−1
, (A.10)

with
Φt−1 = ϕθ +

∑
k≤t−1

ϕp,k− +
∑

k≤t−1
µkϕs,k (A.11)

Thus the linear form and the depth/impact identity Λt−1 = at−1/Φt−1 propagate backwards.
Write the price at any u ≤ 4 as Pu = (Ψu +Ωu)θ+Ψuτu +Ωuζu− +Λuzu, using su = θ+τu,
pu− = θ + ζu− . We define one-step returns Ru ≡ Pu+1 − Pu. For the last interior step
t = 3 (so that R4 = P5 − P4 = θ − P4),

R3 =
[
(Ψ4+Ω4) − (Ψ3+Ω3)

]
θ + Ψ4τ4 + Ω4ζ4− + Λ4z4 − Ψ3τ3 − Ω3ζ3− − Λ3z3,

R4 =
[
1 − (Ψ4+Ω4)

]
θ − Ψ4τ4 − Ω4ζ4− − Λ4z4.

Independence across dates and shocks implies only terms sharing the same innovation
survive in Cov(R3, R4) given as

Cov(R3, R4) =
[
(Ψ4+Ω4) − (Ψ3+Ω3)

][
1 − (Ψ4+Ω4)

]
Var(θ)︸ ︷︷ ︸

fundamental block

− Ψ2
4 Var(τ4) + Ω2

4 Var(ζ4−) + Λ2
4 σ2

z,4︸ ︷︷ ︸
price-pressure (inventory)

(A.12)
An identical calculation gives, for a generic interior pair (t, t + 1) gives us,

Cov(Rt, Rt+1) =
[
(Ψt+1+Ωt+1)−(Ψt+Ωt)

][
(Ψt+2+Ωt+2)−(Ψt+1+Ωt+1)

]
Var(θ)−Ψ2

t+1Var(τt+1)−Ω2
t+1Var(ζ(t+1)−)−Λ2

t+1σ
2
z,t+1.

(A.13)
Obtaining closed form expressions for covariances yields the compact quadratic in impact10

Cov(R3, R4) =
(

µ3(1 − µ3)(ϕs,3 + ϕp,3−)
a2

3
− σ2

z,3

)
︸ ︷︷ ︸

α3

Λ2
3 − µ3 Ω3−

a3︸ ︷︷ ︸
β3

Λ3, (A.14)

with Ω3− = ϕp,3−

ϕθ+ϕp,3−
, which is the Lambda Law stated in the paper for the last interior

step.

10For a non-terminal interior pair (t, t + 1), (A.13) is the primitive expression. When t + 2 is close
to terminal or receives only payoff news, the first term simplifies exactly as above and collapses to the
quadratic in Λt.

20



Proof of 4.2. By independence of (p, s, z) and linearity,

Var(mps − P ) = (ws − A)2σ2
s + (wp − B)2σ2

p + λ2σ2
z . (A.15)

Var(mp − P ) = (w̃p − B)2σ2
p + A2σ2

s + λ2σ2
z . (A.16)

With Φ(µ) = φθ + φp + µφs, compute

Φ′(µ) = φs

λ′(µ) = − a φs

Φ(µ)2

A′(µ) = φs(φθ + φp)
Φ(µ)2

B′(µ) = − φp φs

Φ(µ)2

where Φ(µ) = φθ + φp + µφs. and Φ(µ) = φθ + φp + µφs with wp, ws, and w̃p are
constants. With

Var(mps − P ) = (ws − A)2σ2
s + (wp − B)2σ2

p + λ2σ2
z (A.17)

Var(mp − P ) = (w̃p − B)2σ2
p + A2σ2

s + λ2σ2
z , (A.18)

we obtain

∂

∂µ
Var(mps − P ) = − 2φs

Φ(µ)2

[
(φθ + φp)(ws − A)σ2

s + φp(B − wp)σ2
p

]
− 2a2φs

Φ(µ)3 σ2
z

(A.19)

∂

∂µ
Var(mp − P ) = 2φs

Φ(µ)2

[
φp(w̃p − B)σ2

p + (φθ + φp)A σ2
s

]
− 2a2φs

Φ(µ)3 σ2
z . (A.20)

where the first derivative is strictly negative on [0, 1), while the second is a priori
signindeterminate. Since the posterior variances are constants,

∂∆CE(µ)
∂µ

= φ2
s

Φ(µ)3 a

{
σ2

s (µφs − Φ(µ)) (φp + φθ) − φ2
p σ2

p − a2 σ2
z

}
(A.21)

= − φ2
s

a
(
φθ + φp + µφs

)3

{
(φp + φθ)2 σ2

s + φ2
p σ2

p + a2 σ2
z

}
< 0. (A.22)

Thus ∂∆CE(µ)
∂µ

< 0 for all µ ∈ [0, 1), with continuity at µ = 1 by continuity of loadings.
This shows strict monotonicity and continuity. Since ∆CE(µ) is strictly decreasing and
continuous on [0, 1], the scalar equation ∆CE(µ⋆) = κ has at most one interior solution.
Existence of an interior solution is ensured whenever ∆CE(0) ≥ κ ≥ ∆CE(1); otherwise
a corner µ⋆ ∈ {0, 1} obtains.

Proof. By linearGaussian pricing, the two meansquared pricing errors contain the common
noisepressure term λ(µ)2σ2

z :

Var(mps − P ) = · · · + λ2σ2
z , Var(mp − P ) = · · · + λ2σ2

z .
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Hence ∂∆CE/∂σ2
z (with fixed µ ) is

∂∆CE

∂σ2
z

= 1
2a

(
λ2

Var(θ | p, s)
− λ2

Var(θ | p)

)
(A.23)

= λ2

2a

[
(ϕθ + ϕp + ϕs) − (ϕθ + ϕp)

]
(A.24)

= λ2

2a
ϕs (A.25)

= a2

Φ(µ)2 · ϕs

2a
(A.26)

= a ϕs

2 Φ(µ)2 . (A.27)

(ii) Slope in µ. Appendix A yields

∂∆CE

∂µ
= −ϕ 2

s

a

1
Φ(µ)3

{
(ϕp + ϕθ)2σ2

s + ϕ 2
p σ2

p + a2σ2
z

}
< 0 for all µ ∈ [0, 1).

(iii) Implicit Function Theorem. Differentiating the freeentry condition ∆CE(µ⋆, σ2
z) = κ

w.r.t. σ2
z (holding κ fixed) gives

∂∆CE

∂µ
(µ⋆) ∂µ⋆

∂σ2
z

+ ∂∆CE

∂σ2
z

(µ⋆) = 0 ⇒ ∂µ⋆

∂σ2
z

= −

∂∆CE

∂σ2
z

(µ⋆)

∂∆CE

∂µ
(µ⋆)

.

Substituting the expressions from (i)(ii) and simplifying:

∂µ⋆

∂σ2
z

=

a ϕs

2 Φ(µ⋆)2

ϕ 2
s

a

1
Φ(µ⋆)3

{
(ϕp + ϕθ)2σ2

s + ϕ 2
p σ2

p + a2σ2
z

} = a2 Φ(µ⋆)
2 ϕs

[
(ϕp + ϕθ)2σ2

s + ϕ 2
p σ2

p + a2σ2
z

] .

Positivity follows because the numerator and the bracketed denominator term are positive.
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