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1 The Econometrics of Price Discovery

1.1 Madhavan, Richardson and Roomans(1997)

For the trade direction indicator qt in the Roll model, Madhavan, Richardson,

and Roomans (1997) allow for serial dependence. Suppose that qt ∈ {−1,+1},
and that:

Pr(qt+1 = +1 | qt = +1) = Pr(qt+1 = −1 | qt = −1) = α,

Pr(qt+1 = +1 | qt = −1) = Pr(qt+1 = −1 | qt = +1) = 1− α.

The parameter α is called the continuation probability. If α = 1
2
, trade

directions are uncorrelated. If 1
2
< α < 1, trade directions are persistent

(buys tend to follow buys, etc.) With this structure, qt may be expressed as

an AR(1) process qt = ϕqt−1+vt, where E[vt] = 0, E[v2t ] = σ2
v , and E[vtvt−k] = 0

for k ̸= 0. The model may be analyzed by constructing a table of the eight

possible realizations (paths) of (qt, qt+1, qt+2).

(a) Assuming that qt is equally likely to be ±1, compute the probabilities of

each path. Show that ϕ = 2α− 1.

(b) Compute vt+1 and vt+2. Verify that E[vt+1] = E[vt+2] = 0 and show that

Cov(vt+1, vt+2) = E[vt+1vt+2] = 0.

(c) Demonstrate that the vt values are not serially independent by verifying

that Cov(vt+1, v
2
t+2) ̸= 0.

Solution

Let’s first make a table for the joint probability density Assuming qt ∈ {−1,+1}
with equal probability and Markov transition probability α, the joint probabilities

for all 8 paths are as follows
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Path (qt, qt+1, qt+2) Probability Expression Probability Value

1 (+1,+1,+1) 0.5 · α · α 1
2
α2

2 (+1,+1,−1) 0.5 · α · (1− α) 1
2
α(1− α)

3 (+1,−1,+1) 0.5 · (1− α) · (1− α) 1
2
(1− α)2

4 (+1,−1,−1) 0.5 · (1− α) · α 1
2
α(1− α)

5 (−1,−1,−1) 0.5 · α · α 1
2
α2

6 (−1,−1,+1) 0.5 · α · (1− α) 1
2
α(1− α)

7 (−1,+1,−1) 0.5 · (1− α) · (1− α) 1
2
(1− α)2

8 (−1,+1,+1) 0.5 · (1− α) · α 1
2
α(1− α)

Now, we need to Identify the expected value and variance of the variables.

these may be given by the joint probability distribution. Take for example

the case where qt = qt+1 = qt+2 = +1 we may find the joint probability of

the variable. Now, one can easily show by recursive backward induction the

property of AR models of the form qt = θqt−1 + vt by allowing for recursive

substitution of the term for qk, hence getting the form

qt+n =
n∑

j=1

(θ)jvj + α

Hence, we can obtain all the innovations for each time t ∈ {0, . . . , t}. Specially
in our case, since all covariances of the order 2 and above are zero, the model

breaks down to

vt+2 = qt+2 − ϕqt+1

vt+1 = qt+1 − ϕqt

Also, from the origianal equation, qt = ϕqt−1+vt we have the following relation

- ϕ = Cov(qt−1,qt)
V ar(qt)

. It may be conveninent to show that the variance of the latter

is 1. Hence, substituting t = t + 1 , we have ϕ = Cov(qt, qt+1) = E(qtqt+1) =

qα − 1. Now the only thing left is to demonstrate that vt is not serially

independent. This we shall tackle soon.

Now, consider the condition for independence - it is not the same as that of
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uncorrelatedness. The mathematical condition for independence is given as

Cov(x, f(y)) ̸= 0, ∀f

As a general procedure, we pick the function f(x) = x2 to prove this. Hence,

it may be justified to show why Cov(vt+1, v
2
t+2) ̸= 0, which on calculation may

be found to have dependence on higher order non-zero moments.

1.2 Serial Autocorrelation in Trade Direction

The Roll model assumes that trade directions are serially uncorrelated i.e.

Corr(qt, qs) = 0 for t ̸= s. In practice, one often finds positive autocorrelation

(see Hasbrouck and Ho (1987), Choi, Salandro, and Shastri (1988)). Suppose

that Corr(qt, qt−1) = ρ > 0 and Corr(qt, qt−k) = 0 for k > 1. Suppose that ρ is

known.

(a) Show that

Var(∆pt) = 2c2(1− ρ) + σ2
u, Cov(∆pt,∆pt−1) = −c2(1− 2ρ),

Cov(∆pt,∆pt−2) = −c2ρ, and Cov(∆pt,∆pt−k) = 0 for k > 2.

(b) Suppose that 0 < ρ < 1 describes the true structural model. We compute

an estimate of c, denoted ĉ, assuming that the original Roll model is

correct. Show that ĉ < c, that is, that ĉ is biased downward.

Solution

Consider the following martingale processes followed by the fundamental price

- mt = mt−1 + ut and the process followed by the actual price given by pt =

mt + ctqt. Hence, by following the differences, we get ∆pt = ut + c − t(∆qt).

Now all we need to do is follow the covariance structures for the solution.

V ar(∆pt) = V ar(ut) + c2tV ar(qt − qt−1) + 2Cov(ut,∆qt)

V ar(∆pt) = σ2
u + 2c2(1− ρ) (1)
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This is because we need to remember the fact that there’s a covariance terms

that hasn’t been included before that’s now present because of the correlation.

Now, heading on the autocovariances, we find the following

Cov(∆pt,∆pt−1) = Cov(pt − pt−1, pt−1, pt−2) (2)

expanding and solving we can use the distributive properties of covariances

given as

Cov(a− b, c− d) = Cov(a, c)− Cov(a, d)− Cov(b, c) + Cov(b, d)

this is a very important implication in our expansion. Let’s use this to solve

our problem. Hence, (2) may be given as

Cov(pt, pt−1)− Cov(pt, pt−2)− V ar(pt−1)− Cov(pt−1, pt−2) (3)

Since we also have V ar(qt) = V ar(qt−1) = 1 and Cov(qt, qt−1) = Cov(qt−1, qt−2) =

ρ as well as Cov(qt, qt−2) = 0 by the autoregressive property of the model.

Hence, on a simple expansion, we have

Cov(∆pt,∆pt−1) = −c2(1− 2ρ) (4)

Now, let’s estimate a measure of the Roll model given as ĉ. this measurement

assumes that the original model is true. Hence, in case of a non-zero correlation,

we have ĉ2

2
= c2(1− 2ρ) giving us ĉ = c×

√
1− 2ρ which is essentially < c for

all 0 < ρ < 1

1.3 Roll Models with Correlated Fundamentals

The basic Roll model assumes that trade directions are uncorrelated with

changes in the efficient price: Corr(qt, ut) = 0. Suppose that Corr(qt, ut) = ρ,

where ρ is known and 0 < ρ < 1. The idea here is that a buy order is associated

with an increase in the security value, a connection that will be developed in

models of asymmetric information. Suppose that ρ is known.
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(a) Show that

Var(∆pt) = 2c2 + σ2
u + 2cρσu,

Cov(∆pt,∆pt−1) = −c(c+ ρσu),

Cov(∆pt,∆pt−k) = 0 for k > 1.

(b) Suppose that 0 < ρ < 1 describes the true structural model. We compute

an estimate of c, denoted ĉ, assuming that the original Roll model is

correct. Show that ĉ > c, that is, that ĉ is biased upward.

Solution

Assume that there’s correlation between order flow and fundamental value i.e.

a buy today triggers a higher fundamental value tomorrow, then we can rework

the previous question in the following manner given Cov(qt, ut) ̸= 0.

V ar(∆pt) = σ2
u + 2Cov(ut, qt − qt−1) (5)

Since we have c = −
√
Cov(∆pt,∆pt−1) then we can assume that Cov(ut, qt−1) =

0 and conclude that

Var(∆pt) = σ2
u + 2c2 + 2cρσu

this is because we have a memory of only the current trade and not the

previous trade directions. For us, the previous trade directions qt−1 and beyond

are immaterial. In a similar fashion, it may also be possible to show that

Cov(∆pt,∆pt−1) = −c(c+ ρσu.

1.4 Price History means Innovation History

Consider the standard generalized version of the Roll(1984) model where the

price evolves according to pt = mt + cqt, fundamental value evolves according

to the process mt = mt−1 + λqt + ut. If the first difference in the price process

∆pt = pt − pt−1 is observed, then (a) show that pt my be realized as the

conditional expectation of its past processes, i.e. E(pt|pt−1, pt−2, . . . ) (b) the
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fact that the price change process ∆pt may be shown as an AR(1) process and

(c) that price history is the same as innovation history, or in other words that

∆pt can also be represented as a MA(1) process.

Solution

Since qt is independent of ut, we can safely conclude that prices are basically

conditional expectations of their past values. It may first be convenient to

show that this price follows an AR(1) process, then we can try and invert the

same.

Consider the first order difference in prices ∆pt which is

∆pt = (λ+ c)qt − cqt−1 + ut

and

∆pt−1 = (λ+ c)qt−1 + cqt−2 + ut−1

Now, it may be convenient to use the Yule-Walker projection of ∆pt on its

own moments given by

V ar(∆pt) = (λ+ c)2 + c2 + σ2
u

Cov(∆pt,∆pt−1) = −c(λ+ c)

In an ordinary linear projection, we can define the dependent variable and the

regressor by the following relation

y =
Cov(y, x1)

V ar(x1)
x1 +

Cov(y, x2)

V ar(x2)
x2 + · · ·+ Cov(y, xn)

V ar(xn)
xn

Hence, we have the first order autocorrelation given as

β1 =
Cov(∆pt,∆pt−1)

V ar(∆pt−1)

since V ar(∆pt) = V ar(∆pt−1), we can conclude that

β1 = − c(λ+ c

(λ+ c)2 + c2 + σ2
u
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if c > 0, it may be possible to show that the best predictor is an AR(1) process

and that |β1| < 1. Hence, we can conclude that such a process is a very good

predictor since all auto-covariances of the order 2 and above are zero.

Now, all we need to do is to invert this AR(1) process to a moving average

kind of process. To do this, consider the AR(1) process

∆pt = β1∆pt−1 + εt, where |β1| < 1, and εt ∼ i.i.d. (0, σ2)

We now recursively substitute lagged values of ∆pt−j using the AR(1) equation

∆pt = β1∆pt−1 + εt

= β1(β1∆pt−2 + εt−1) + εt

= β2
1∆pt−2 + β1εt−1 + εt

= β3
1∆pt−3 + β2

1εt−2 + β1εt−1 + εt
...

=
∞∑
j=0

βj
1εt−j

Hence, the AR(1) process can be represented as a Moving Average of infinite

order, given by

∆pt =
∞∑
j=0

βj
1εt−j

This expansion is valid as long as the stationarity condition |β1| < 1 is

satisfied, which ensures geometric decay and convergence. Hence, price history

is equivalent to innovation history.

1.5 Variance of the Filtering Error

Consider a generalized Roll model where pt = mt + cqt, we define the tracking

error as σ2
s = V ar(pt − mt). Show that (a) this variance has a finite lower

bound which may be achieved only under the circumstance that σ2
u = 0 or

more specifically, ut = 0, ∀t and (b) calculate the value of this tracking error
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in terms of c, λ, σ2
u and show that under the first order condition, this particular

expression is lower bounded with a finite value.

Solution

Generally speaking, we have the following relation given as st = pt − mt i.e.

adding and subtracting the term ft, we have st = (pt − ft) + (mt − ft) where

ft = E(mt|pt, pt−1). Hence, it may be possible to calculate the variance of this

first term.

σ2
s = V ar(pt − ft) + V ar(mt − ft) (6)

since ft = pt + θϵt from our famous condition ”Price history is innovation

history”, we may be able to show that V ar(ft − pt) = θ2σ2
ϵ or the whole term

for Eq. (6) has a minimum value. Now, we must proceed to calculate the

value of the second term in Eq. (6). We are also given that

θ = −c(c+ λ)

σ2
ϵ

⇒ θ2 =
c2(c+ λ)2

σ4
ϵ

Substituting back in our equation we have

Var(mt − ft) =
c2(c+ λ)2

σ4
ϵ

· σ2
ϵ =

c2(c+ λ)2

σ2
ϵ

and since

σ2
ϵ =

A

1 + θ
, where A = c2+(c+λ)2+σ2

u ⇒ Var(mt−ft) =
c2(c+ λ)2(1 + θ)

A

σ2
s =

1

2

[
c2 + (c+ λ)2 + σ2

u −
(λ2 + σ2

u)(2c+ λ)2

(2c+ λ)2 + σ2
u

]
(7)

1.6 Lagged Delay Dynamics

The beliefs of market participants at time t are summarized in mt, where

mt = mt−1 + wt, with wt ∼ iid(0, σ2
w). But due to operational delays, trades

actually occur relative to a lagged value

pt = mt−1 + cqt,
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where qt ∈ {−1,+1} represents the direction of the trade and is assumed

to be iid with zero mean and unit variance. Find out (a) What are the

autocovariances of the price process pt? and (b) the moving average representation

of pt?

Solution

We compute

Cov(∆pt,∆pt−1) = Cov (wt−1 + c(qt − qt−1), wt−2 + c(qt−1 − qt−2))

= Cov(wt−1, wt−2)︸ ︷︷ ︸
=0

+ cCov(wt−1, qt−1 − qt−2)︸ ︷︷ ︸
=0

+ cCov(qt − qt−1, wt−2)︸ ︷︷ ︸
=0

+c2Cov(qt − qt−1, qt−1 − qt−2)

(8)

Now compute the final term

Cov(qt − qt−1, qt−1 − qt−2) = E[(qt − qt−1)(qt−1 − qt−2)]

= E[qtqt−1 − qtqt−2 − q2t−1 + qt−1qt−2]

Using independence and zero mean

E[qtqt−1] = E[qtqt−2] = E[qt−1qt−2] = 0, E[q2t−1] = 1

⇒ Cov(qt − qt−1, qt−1 − qt−2) = −1

Therefore

Cov(∆pt,∆pt−1) = −c2 (9)

Now, we proceed to calculate the Variance of the price change given as

Var(∆pt) = Var(wt−1) + c2Var(qt − qt−1)
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Since qt, qt−1 are iid with unit variance:

Var(qt − qt−1) = Var(qt) + Var(qt−1) = 2

γ0 = Var(∆pt) = σ2
w + 2c2 (10)

1.7 Correlated Lagged Delays

Delays may also lead to price adjustments that do not instantaneously correct.

Suppose the fundamental value evolves as:

mt = mt−1 + wt,

but the observed price adjusts only partially toward the fundamental value

pt = pt−1 + α(mt − pt−1), with 0 < α < 1.

Show that the autoregressive representation for price changes is

ϕ(L)∆pt = εt where ϕ(L) = 1− (1− α)L and εt = αwt.

while verifying that

ϕ(1)−2σ2
ε = σ2

w.

Solution

We are given that the fundamental value evolves as

mt = mt−1 + wt, wt ∼ i.i.d. (0, σ2
w),

and that the observed price adjusts partially toward the fundamental value

pt = pt−1 + α(mt − pt−1), 0 < α < 1.
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Rewriting the price adjustment equation:

pt = (1− α)pt−1 + αmt

⇒ ∆pt = pt − pt−1 = −αpt−1 + αmt = α(mt − pt−1)

Substitute for mt = mt−1 + wt:

∆pt = α(mt−1 + wt − pt−1)

= α(mt−1 − pt−1) + αwt

From the previous period

∆pt−1 = α(mt−1 − pt−2) ⇒ mt−1 =
1

α
∆pt−1 + pt−2

Now substitute this into the equation for mt:

mt = mt−1 + wt =

(
1

α
∆pt−1 + pt−2

)
+ wt

Hence

∆pt = α(mt − pt−1)

= α

(
1

α
∆pt−1 + pt−2 + wt − pt−1

)
= ∆pt−1 + α(pt−2 − pt−1) + αwt

= (1− α)∆pt−1 + αwt

Define

εt = αwt

Then we obtain the AR(1) representation:

∆pt = (1− α)∆pt−1 + εt
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In lag operator notation:

(1− (1− α)L)∆pt = εt

For the variance, from the above, we know

εt = αwt ⇒ σ2
ε = α2σ2

w

Also

ϕ(L) = 1− (1− α)L ⇒ ϕ(1) = 1− (1− α) = α

Now verify

ϕ(1)−2σ2
ε =

1

α2
· α2σ2

w = σ2
w

2 Advanced Econometrics

2.1 Market Maker with Autocorrelated Trades

Suppose the trade direction qt ∈ {−1,+1} follows a Markov chain with continuation

probability α ∈
(
1
2
, 1
)
. Let the fundamental value evolve as:

mt = mt−1 + λqt + ut, ut ∼ N (0, σ2
u)

and transaction prices are given by pt = mt + cqt. The market maker knows

the model but does not observe mt; she observes pt, pt−1, and assumes a prior

mt−1 ∼ N (µt−1, σ
2
t−1).

(a) Derive the Bayesian posterior belief of the market maker about mt after

observing pt.

(b) Under what condition is the market maker’s posterior variance minimized?

(c) How does the correlation in trade direction (α > 0.5) bias the MM’s

inference of mt?

(d) Can you derive a Kalman-like recursive filter for E[mt|pt, pt−1]?
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2.2 Generalized Roll with Execution Delays

Let the price be set with one-period stale information:

pt = mt−1 + cqt

and

mt = mt−1 + λqt + ut, qt ∼ AR(1) : qt = ϕqt−1 + εt

(a) Derive the expression for ∆pt and compute its autocovariances up to lag

2.

(b) Show under what condition Cov(∆pt,∆pt−1) > 0, even though in the

standard Roll model it is negative.

(c) Propose a method to de-bias the estimate of c when a researcher wrongly

assumes iid qt.

Solution

Using the setup provided, we can compute the autocovariance for succesive

price changes to be given as

γ0 = 2c2 + λ2 + σ2
u

γ1 = c(λ− c)

The condition under which this auto-covariance is positive may be interesting.

If we have λ > c meaning that infomational effects on price changes outweigh

the bid-ask bounce then we may find positive auto-correlation in prices, i.e.

higher returns are followed by even higher returns. On the other hand, if

λ < c then the model converges to the standard bid-ask bounce model where

the spread can be estimated from the auto-covariances.
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2.3 Optimal Estimation under Stale Prices

Suppose:

pt = mt + cqt, mt = mt−1 + λqt + ut, Corr(qt, qt−1) = ρ

Only {pt} is observable.

(a) Show how estimating λ and c using autocovariances of ∆pt is biased if

ρ ̸= 0.

(b) Derive a consistent estimator for λ using third-order moments.

(c) Propose a GMM system using moment conditions involving ∆pt, ∆pt−1,

and ∆2pt.

Solution

Under the given model assumptions, we calculate the value of γ0 to be given

as

λ2 + σ2
u + 2c2(1− ρ)

We can clearly notice that this now depends on the correlation of successive

trade directions. If buys tend to follow buys, we find Corr.(qt, qt−1) > 0 and

alternately for sells. Under these conditions, the value of γ0 may be different

(i.e. in case we assume them to be i.i.d which is wrong) as we don’t take into

consideration the serial dependence of successive trade directions.

2.4 Variance Decomposition with Informed Order Flow

Extend the model:

qt = γxt + ηt, Cov(xt,mt) > 0

(a) Decompose Var(pt) into components due to informed trading, noise trading,

and inventory effects.

(b) Show how c and γ interact to amplify/dampen information incorporation.

15



(c) Suppose xt ∼ AR(1). Derive the dynamic response of pt to a shock in

xt.

(d) Derive a signal-to-noise ratio metric and relate it to optimal liquidity

provision.

Solution

We now consider the case where the information content of prices is now

contaminated by the effects of noise trading. Hence, the trade direction

indicator qt is now noisy and is partially observable. The model now assumes

mt = mt−1 + λ(γxt + ηt) + ut

pt = mt + c(γxt + ηt)

with Cov(xt,mt) > 0 indicating that trade direction has an effect on the

fundamental value through the permanent information impact (something like

Kyle’s lambda). Extracting auto-covariances, we have

γ0 = (γ2 + η2)((λ+ c)2 + c2) + σ2
u

γ1 = −2c(λ+ c)γ2ρ

This now sheds light on an important result. Since, we have γ2, we may

find that significant correlation with succesive trades is able to increase the

autoc-covariance, however, it doesn’t matter if buys follow buys or buy follow

sells as this component has equal weightage in both cases. However what

matters is the parameter ρ which indicates the effect of trade direction on the

fundamental value though an informational content context. This means, in

case of noise trading, we need to pay more attention to adverse selection risks

as these may be hidden within the prices.
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2.5 Invertibility and State-Space Inference

Given:

∆pt = (λ+ c)qt − cqt−1 + ut

and qt is Markovian,

(a) Write the observation and state equations for a state-space model.

(b) Determine whether the system is invertible.

(c) Propose an algorithm to estimate the latent state qt and mt recursively.
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