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1 The Econometrics of Price Discovery

1.1 Madhavan, Richardson and Roomans(1997)

For the trade direction indicator ¢; in the Roll model, Madhavan, Richardson,
and Roomans (1997) allow for serial dependence. Suppose that ¢, € {—1,+1},
and that:

Pr(¢qo1 =+1|¢=+1)=Pr(ggr1=—-1|q=-1) = q,

Pr(ggp1=+1|¢=-1)=Pr(ggrmn=-1|qs=+1)=1—

The parameter « is called the continuation probability. If a = %, trade

directions are uncorrelated. If % < a < 1, trade directions are persistent
(buys tend to follow buys, etc.) With this structure, ¢; may be expressed as
an AR(1) process ¢; = ¢q;_1+v;, where E[vy] = 0, E[v?] = 02, and E[v,v;_1] = 0
for k # 0. The model may be analyzed by constructing a table of the eight

possible realizations (paths) of (g, qi11, @ei2)-

(a) Assuming that ¢, is equally likely to be 1, compute the probabilities of
each path. Show that ¢ = 2a — 1.

(b) Compute vyyq and vy 9. Verify that E[veyq] = E[vi1] = 0 and show that

Cov(vig1, Vir2) = Elvgqviga] = 0.

(c) Demonstrate that the v; values are not serially independent by verifying
that Cov(vis1,v7,,) # 0.

Solution
Let’s first make a table for the joint probability density Assuming ¢; € {—1,+1}
with equal probability and Markov transition probability «;, the joint probabilities

for all 8 paths are as follows



Path  (qi, qi1,qi12) Probability Expression Probability Value

1 (+1,+1,41) 05-a-« 1a?

2 (+1,+1,-1) 05-a-(1-«) sa(l—a)
3 (+1,-1 +1) 05-(1—a)-(1—a) i(1—a)?
4 (+1,-1,-1) 05-(1-a) -« ta(l—a)
5 (-1,-1,-1) 05 -a-« za?

6 (= 1,—1 +1) 05 -a-(1—a) sa(l—a)
7 (-L+41,-1) 05-(1-a)-(1-a) 1(1-a)?
8 (-1,+1,+1) 05-(1—a) « ta(l—a)

Now, we need to Identify the expected value and variance of the variables.
these may be given by the joint probability distribution. Take for example
the case where ¢4 = ;11 = q12 = +1 we may find the joint probability of
the variable. Now, one can easily show by recursive backward induction the
property of AR models of the form ¢; = 0¢;_1 + v; by allowing for recursive

substitution of the term for gy, hence getting the form

n

Qtin = Z (0)v; +

J=1

Hence, we can obtain all the innovations for each time ¢ € {0, ...,t}. Specially
in our case, since all covariances of the order 2 and above are zero, the model

breaks down to

Vt+2 = Qi+2 — ¢Qt+1
Vi+1 = Qe+1 — ¢Qt

Also, from the origianal equation, ¢; = ¢q;_1+v; we have the following relation

- = %1’)%) It may be conveninent to show that the variance of the latter
is 1. Hence, substituting t =t + 1 , we have ¢ = Cov(qi, ¢141) = E(qqi+1) =
ga — 1. Now the only thing left is to demonstrate that v; is not serially
independent. This we shall tackle soon.

Now, consider the condition for independence - it is not the same as that of
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uncorrelatedness. The mathematical condition for independence is given as

Cov(w, f(y)) # 0,V

As a general procedure, we pick the function f(x) = 2% to prove this. Hence,
it may be justified to show why Cov(vis1,v7,,) # 0, which on calculation may

be found to have dependence on higher order non-zero moments.

1.2 Serial Autocorrelation in Trade Direction

The Roll model assumes that trade directions are serially uncorrelated i.e.
Corr(q, qs) = 0 for t # s. In practice, one often finds positive autocorrelation
(see Hasbrouck and Ho (1987), Choi, Salandro, and Shastri (1988)). Suppose
that Corr(qs, g;—1) = p > 0 and Corr(g;, g;—x) = 0 for k > 1. Suppose that p is

known.

(a) Show that
Var(Ap;) = 2¢2(1 — p) + 02,  Cov(Aps, Api_1) = —c*(1 — 2p),
Cov(Ap;, Ap;_o) = —c?p, and Cov(Apy, Ap;_x) =0 for k> 2.

(b) Suppose that 0 < p < 1 describes the true structural model. We compute
an estimate of ¢, denoted ¢, assuming that the original Roll model is

correct. Show that ¢ < ¢, that is, that ¢ is biased downward.

Solution

Consider the following martingale processes followed by the fundamental price
- my = my_1 + u; and the process followed by the actual price given by p; =
my + ¢,q;. Hence, by following the differences, we get Ap, = u; + ¢ — t(Aqy).

Now all we need to do is follow the covariance structures for the solution.

Var(Ap,) = Var(u) + C?Var(qt — qi—1) + 2Cov(ug, Ag)

Var(Apy) = o2 +2¢*(1 — p) (1)
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This is because we need to remember the fact that there’s a covariance terms
that hasn’t been included before that’s now present because of the correlation.

Now, heading on the autocovariances, we find the following

COU(APn Apt—l) = Cov(pt - pt—lapt—lapt—2> (2)

expanding and solving we can use the distributive properties of covariances

given as
Cov(a —b,c—d) = Cov(a,c) — Cov(a,d) — Cov(b,c) + Cov(b, d)

this is a very important implication in our expansion. Let’s use this to solve

our problem. Hence, (2) may be given as

COU(Pt;pt—l) - COU(pt,Pt—2) - Va?"(pt—1) - OOU(pt—hPt—2) (3)

Since we also have Var(q;) = Var(g_1) = 1 and Cov(q, ¢i—1) = Cov(qi—1, Gt—2) =
p as well as Cov(q, q;—2) = 0 by the autoregressive property of the model.

Hence, on a simple expansion, we have
Cov(Apy, Api—1) = —¢*(1 — 2p) (4)

Now, let’s estimate a measure of the Roll model given as ¢. this measurement
assumes that the original model is true. Hence, in case of a non-zero correlation,
we have % = (1 —2p) giving us é = ¢ x /T — 2p which is essentially < ¢ for
all0 < p<1

1.3 Roll Models with Correlated Fundamentals

The basic Roll model assumes that trade directions are uncorrelated with
changes in the efficient price: Corr(g;, u;) = 0. Suppose that Corr(q,us) = p,
where p is known and 0 < p < 1. The idea here is that a buy order is associated
with an increase in the security value, a connection that will be developed in

models of asymmetric information. Suppose that p is known.



(a) Show that

Var(Ap,) = 2¢ + o2 + 2cpo,,
Cov(Apy, Api_1) = —c(e+ poy),
Cov(Apy, Apy_g) =0 for k> 1.

(b) Suppose that 0 < p < 1 describes the true structural model. We compute
an estimate of ¢, denoted ¢, assuming that the original Roll model is

correct. Show that ¢ > ¢, that is, that ¢ is biased upward.

Solution
Assume that there’s correlation between order flow and fundamental value i.e.
a buy today triggers a higher fundamental value tomorrow, then we can rework

the previous question in the following manner given Cov(q, u;) # 0.

Var(Ap;) = o2 +2Cov(us, ¢ — qi—1) (5)

Since we have ¢ = —/Cov(Ap;, Ap;—1) then we can assume that Cov(uy, ¢—1) =
0 and conclude that

Var(Ap,) = 02 + 2¢* 4 2cpo,

this is because we have a memory of only the current trade and not the
previous trade directions. For us, the previous trade directions ¢;_; and beyond
are immaterial. In a similar fashion, it may also be possible to show that
Cov(Apy, Api—1) = —c(c+ poy.

1.4 Price History means Innovation History

Consider the standard generalized version of the Roll(1984) model where the
price evolves according to p; = m; + cq;, fundamental value evolves according
to the process m; = my_1 + Aq; + u;. If the first difference in the price process
Ap; = p — pi—1 is observed, then (a) show that p, my be realized as the

conditional expectation of its past processes, i.e. E(p|pi_1,pi—2,...) (b) the
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fact that the price change process Ap; may be shown as an AR(1) process and
(c) that price history is the same as innovation history, or in other words that
Ap; can also be represented as a MA(1) process.

Solution

Since ¢; is independent of u;, we can safely conclude that prices are basically
conditional expectations of their past values. It may first be convenient to
show that this price follows an AR(1) process, then we can try and invert the
same.

Consider the first order difference in prices Ap, which is
Apy = (A+0)q — g1 + uy

and
Apig = A+ ) @—1 + cqr—o + Ut

Now, it may be convenient to use the Yule-Walker projection of Ap; on its

own moments given by
Var(Ap,) = (A +c¢)? +c* + o2

Cov(Ap, Api—1) = —c(A +¢)

In an ordinary linear projection, we can define the dependent variable and the

regressor by the following relation

B C’ov(y,xl)x COU(y,ZEQ)x C’ov(y,xn)x
T Var(z) ' Var(zy) C Var(z,) "

Hence, we have the first order autocorrelation given as

8 = Cov(Apy, Api-1)
! Var(Ap;_1)

since Var(Ap;) = Var(Ap;—1), we can conclude that

c(A+c
A+c)2+c2+02

fr=—
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if ¢ > 0, it may be possible to show that the best predictor is an AR(1) process
and that |8;| < 1. Hence, we can conclude that such a process is a very good
predictor since all auto-covariances of the order 2 and above are zero.

Now, all we need to do is to invert this AR(1) process to a moving average

kind of process. To do this, consider the AR(1) process
Ap; = B1Ap,_1 +¢e;, where |31 < 1, and &, ~iid. (0,0%)
We now recursively substitute lagged values of Ap;_; using the AR(1) equation

Apy = 51Ap1 + &
= B1(B1Api2 +&11) + &
= B7Api—2 + Biei-1 + &
= B Api—3 + Bieis + i1 + &

o0
= Bler
5=0
Hence, the AR(1) process can be represented as a Moving Average of infinite

order, given by
o
Ap; = Z Bler
j=0

This expansion is valid as long as the stationarity condition |5 < 1 is
satisfied, which ensures geometric decay and convergence. Hence, price history

is equivalent to innovation history.

1.5 Variance of the Filtering Error

Consider a generalized Roll model where p, = m; + cq;, we define the tracking
error as 02 = Var(p; — my;). Show that (a) this variance has a finite lower
bound which may be achieved only under the circumstance that o2 = 0 or

more specifically, u; = 0,Vt and (b) calculate the value of this tracking error



in terms of ¢, \, 02 and show that under the first order condition, this particular
expression is lower bounded with a finite value.
Solution
Generally speaking, we have the following relation given as s; = p; — my i.e.
adding and subtracting the term f;, we have s, = (p; — fi) + (m; — f;) where
fi = E(my|ps, pr—1). Hence, it may be possible to calculate the variance of this
first term.

o2 =Var(pe — fo) + Var(m; — f) (6)

since f; = p; + O¢; from our famous condition ”Price history is innovation
history”, we may be able to show that Var(f; — p;) = 0*0? or the whole term
for Eq. (6) has a minimum value. Now, we must proceed to calculate the

value of the second term in Eq. (6). We are also given that

clc+ )N N e+ N)?

2 4
O O

0 = —

Substituting back in our equation we have

Ale+N)? 5, Ale+N)?

Var(m; — f;) = p op p
and since
A 2 A)2(1+0
o2 = oo where A = ¢®+(c+A)?+02 = Var(m;— f;) = clet 121( +9)

1 (A2 +02)(2c + N)?
2~ |2 2 2 u
7 =3 4+ (c+ N+ o et V1o (7)

1.6 Lagged Delay Dynamics

The beliefs of market participants at time ¢ are summarized in m;, where
my = my_q + wy, with wy ~ iid(0,02). But due to operational delays, trades

actually occur relative to a lagged value

Py = My_1 + CGy,



where ¢; € {—1,+1} represents the direction of the trade and is assumed
to be iid with zero mean and unit variance. Find out (a) What are the
autocovariances of the price process p;? and (b) the moving average representation

of p;7

Solution

We compute

Cov(Aps, Api—1) = Cov (wi—1 + (¢t — qt—1), Wi—a + c(G-1 — qt—2))

= Cov(wi—1, wi—2) + ¢ Cov(wi_1, g—1 — q—2)

v~ v~
=0 =0

+cCov(gr — o1, wi—2) +¢* Cov(gr — i1+ G — Gi—2)

=0

(8)

Now compute the final term

COV(Qt —qt—1,4t—1 — Qt72) = E[(Qt - %4)(%4 - Qt72)]

= E[Qt‘]tfl — qtqt—2 — qf,l + q1571Qt72]

Using independence and zero mean

E[tht—l] = E[QtQt—ﬂ = E[Qt—th—2] =0, E[%Z—ﬂ =1

= Cov(q — @1, Q-1 — Qe—2) = —1

Therefore
Cov(Apy, Api—1) = —c? (9)

Now, we proceed to calculate the Variance of the price change given as

Var(Ap;) = Var(w;_1) + c2Var(qt — qi—1)
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Since ¢, ¢;—1 are iid with unit variance:
Var(q; — q;—1) = Var(q;) + Var(g_1) = 2
70 = Var(Ap;) = 02 + 2¢° (10)

1.7 Correlated Lagged Delays

Delays may also lead to price adjustments that do not instantaneously correct.

Suppose the fundamental value evolves as:
my = My_1 + W,
but the observed price adjusts only partially toward the fundamental value
pr=pio1 +a(my—pi_q1), with 0<a<l.

Show that the autoregressive representation for price changes is

O(L)Apy =&, where ¢(L)=1—-(1—-a)L and & = aw,.

while verifying that

Solution

We are given that the fundamental value evolves as
me =my_q +wy, w; ~iid. (0,02),
and that the observed price adjusts partially toward the fundamental value

pr=piatalm —p1), 0<a<l
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Rewriting the price adjustment equation:

Pt = (1 - Oé)ptq + amy

= Apy = py — pr-1 = —ap_1 + amy = a(my — p_1)
Substitute for m; = m;_1 + w;:

Apy = a(my—1 + wy — pr_1)

= o(my—1 — pe—1) + owy
From the previous period
1
Api—1 = a(my—1 — Pr—2) = My = aApt—1 + Pr—2

Now substitute this into the equation for m,:

1
my = My_1 + wy = EApt‘l + pi—2 | +wy

Hence
Apy = a(m; — pi1)
= (éApt—l + P2 + W — pt—l)
= Api1 +a(pro — pe-1) + aw;
=(1—a)Api_1 + aw,
Define

Et = QW

Then we obtain the AR(1) representation:

Apy = (1 — @)Ap_1 + &
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In lag operator notation:

(1—(1—a)L)Ap, = ¢
For the variance, from the above, we know

£ = aw, = o2 = a0’

Also
o(L)y=1-1-a)L=¢(1)=1-(1—-a)=«

Now verify

2 Advanced Econometrics

2.1 Market Maker with Autocorrelated Trades

Suppose the trade direction ¢; € {—1, 41} follows a Markov chain with continuation

probability a € (%, 1). Let the fundamental value evolve as:
my = my_1 + A\ +ug,  u ~ N(0,02)

and transaction prices are given by p; = my + c¢q;. The market maker knows
the model but does not observe m;; she observes p;, p;_1, and assumes a prior

my1 ~ N (i, 0371)‘

(a) Derive the Bayesian posterior belief of the market maker about m; after

observing p;.
(b) Under what condition is the market maker’s posterior variance minimized?

(c) How does the correlation in trade direction (o > 0.5) bias the MM’s

inference of m;?

(d) Can you derive a Kalman-like recursive filter for E{m|p:, pi—1]?
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2.2 Generalized Roll with Execution Delays

Let the price be set with one-period stale information:
Dr = my—1 + cqy

and
my=mu_1+ A +u, ¢ ~AR(): ¢ =oq_1+¢

(a) Derive the expression for Ap, and compute its autocovariances up to lag
2.

(b) Show under what condition Cov(Ap;, Ap;—1) > 0, even though in the

standard Roll model it is negative.

(c) Propose a method to de-bias the estimate of ¢ when a researcher wrongly

assumes iid g;.

Solution
Using the setup provided, we can compute the autocovariance for succesive

price changes to be given as
Yo =22 + A2 + o2

7 =c(A—=c¢)

The condition under which this auto-covariance is positive may be interesting.
If we have A > ¢ meaning that infomational effects on price changes outweigh
the bid-ask bounce then we may find positive auto-correlation in prices, i.e.
higher returns are followed by even higher returns. On the other hand, if
A < ¢ then the model converges to the standard bid-ask bounce model where

the spread can be estimated from the auto-covariances.

14



2.3 Optimal Estimation under Stale Prices

Suppose:
pe=my+cq, my=my_1+ A +u, Corr(q,q-1)=p

Only {p;} is observable.

(a) Show how estimating A and ¢ using autocovariances of Ap, is biased if

p # 0.

(b) Derive a consistent estimator for A using third-order moments.

(c) Propose a GMM system using moment conditions involving Apy, Ap;_1,
and AZp,.

Solution
Under the given model assumptions, we calculate the value of vy to be given
as

M 402 + 2641 - p)

We can clearly notice that this now depends on the correlation of successive
trade directions. If buys tend to follow buys, we find Corr.(¢;, ¢;,—1) > 0 and
alternately for sells. Under these conditions, the value of vy may be different
(i.e. in case we assume them to be i.i.d which is wrong) as we don’t take into

consideration the serial dependence of successive trade directions.

2.4 Variance Decomposition with Informed Order Flow

Extend the model:
G = yre +n,  Cov(my,mye) >0

(a) Decompose Var(p;) into components due to informed trading, noise trading,

and inventory effects.

(b) Show how ¢ and v interact to amplify /dampen information incorporation.
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(c¢) Suppose z; ~ AR(1). Derive the dynamic response of p; to a shock in

Tt.

(d) Derive a signal-to-noise ratio metric and relate it to optimal liquidity

provision.

Solution
We now consider the case where the information content of prices is now
contaminated by the effects of noise trading. Hence, the trade direction

indicator ¢; is now noisy and is partially observable. The model now assumes
my = my_1 + Ny + 1) + uy

pe = my + c(yzy + ny)

with Cov(zs,m;) > 0 indicating that trade direction has an effect on the
fundamental value through the permanent information impact (something like

Kyle’s lambda). Extracting auto-covariances, we have
Y= 0" +n) (At ) +%) + o,

n=—=2c(A+c)y’p

This now sheds light on an important result. Since, we have 72, we may
find that significant correlation with succesive trades is able to increase the
autoc-covariance, however, it doesn’t matter if buys follow buys or buy follow
sells as this component has equal weightage in both cases. However what
matters is the parameter p which indicates the effect of trade direction on the
fundamental value though an informational content context. This means, in
case of noise trading, we need to pay more attention to adverse selection risks

as these may be hidden within the prices.
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2.5 Invertibility and State-Space Inference

Given:

Apy = A+ ¢)q — cqi—1 +

and ¢; is Markovian,

(a) Write the observation and state equations for a state-space model.
(b) Determine whether the system is invertible.

(c) Propose an algorithm to estimate the latent state ¢, and m; recursively.
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