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Chapter 1

The Range to Target

“Reverify our range to target. ONE

PING only.”

—Captain Marco Ramius

In the cold waters of the North Atlantic, a Soviet submarine captain faces an existential

problem: he must determine his distance to an unseen target using the most basic of tools — a

sound wave sent into the darkness, waiting for the echo to return. One ping only. Not because

restraint is virtue, but because every acoustic transmission risks exposure. Every signal sent is

a declaration of presence. Yet without that signal, the darkness yields nothing. The parallel

to modern financial markets is not immediately obvious, but it is precise. In the limit order

books that govern global equity trading, a similar darkness persists. Institutional investors and

market makers stand at a precipice, needing to know how deep the visible queue of liquidity truly

runs before executing large orders. Yet the most critical information—the location of hidden

reserves concealed behind iceberg orders, which remains acoustic silence. The order book shows

a picture of surface depth, but beneath lies an invisible structure, a landscape of dormant volume

that reshapes execution dynamics in ways that traditional models cannot capture.This chapter

establishes that parallel through analogy, not through mathematics. We begin with how sonar

works, how it distinguishes between active and passive measurement, and how tomographic

principles allow us to reconstruct hidden structures from acoustic echo patterns. We then trace

the evolution of limit order books as a mechanism for price discovery and execution, showing

how these modern electronic markets can be understood as queuing systems with a peculiar

constraint: most of the queue is invisible. Finally, we introduce the core intuition behind our

solution: by transmitting “pings”—carefully constructed probe orders—into the limit order

book and listening for the “echoes” of execution, we can reconstruct the true depth of the

hidden queue, much as sonar reveals the shape of a submarine.
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6 CHAPTER 1. THE RANGE TO TARGET

1.1 Measurement as a Form of Revelation

To understand why measurement itself becomes an act of revelation, we must first appreciate

how information is extracted from darkness. Sonar, derived from the term “sound navigation

and ranging,” represents humanity’s most mature technology for detecting objects in opaque

media. Unlike light, which is absorbed and scattered in water, sound propagates with remarkable

clarity across the ocean, allowing acoustic waves to travel thousands of kilometers. Yet this

clarity comes with a fundamental constraint: one cannot simply listen passively to find an

object. Silence tells you nothing. Consider the distinction between two approaches.

1.1.1 Passive Measurement

The first is passive sonar, in which a submarine operator listens to ambient acoustic noise—the

propeller signatures of distant ships, the creaks and groans of distant submarines, the low-

frequency calls of whales, the industrial hum of ocean-floor geological activity. From these

signals, one can infer the presence and rough location of distant objects. The passive approach

is silent; it reveals the listener’s position to no one. But it provides only fragmentary information.

A ship’s engine signature might be old, refracted through multiple thermal layers, degraded by

distance. The listener cannot verify distance directly; only experience and pattern recognition

suggest proximity.

1.1.2 Active Measurement

The second approach is active sonar, exemplified by naval radar and sonar systems. Here, the

observer sends out a signal—a pulse of acoustic energy and listens for the reflection. If an object

exists at range r, the signal will bounce off that object and return to the transmitter. Given the

speed of sound in water, c ≈ 1500 meters per second, and the round-trip time τ of the reflected

pulse, the range follows immediately: r = cτ/2. This is direct measurement, mathematically

unambiguous. But it carries a price: the outgoing pulse announces the observer’s presence

and intentions to anyone in the surrounding ocean. It is an act of revelation that demands

commitment. The submarine captain in Clancy’s opening chooses active sonar for precisely this

reason. In a moment where stealth is no longer possible, i.e. where the target is close enough

that the outcome will be determined by who sees first, the captain chooses the certainty of

active measurement over the ambiguity of passive observation. A single ping, aimed at maximum

range, provides unambiguous information about distance and bearing. That information justifies

the exposure.

1.2 Reconstructing Invisible Structure

The insight that measurement can reveal hidden structure extends beyond simple distance de-

termination. In medical imaging, computed tomography represents one of the most powerful

diagnostic tools precisely because it operates on a principle of reconstructing three-dimensional

structure from many one-dimensional measurements. A CT scanner sends X-rays through a

patient’s body from multiple angles. Each ray is absorbed differently depending on the tissue
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density along its path. By collecting many such measurements from many angles, and applying

mathematical inversion techniques, the scanner reconstructs a complete three-dimensional im-

age of internal structures. No individual ray tells the full story; collectively, they reveal what

cannot be seen directly. The principle underlying tomography is fundamentally one of conser-

vation. Consider a simple example. Suppose we send a ray of light through a two-dimensional

cross-section of an object, from left to right. The total absorption of that ray depends on the

integrated density of material along the ray’s path. Now suppose we send another ray from a

different angle—perhaps from top to bottom. Again, absorption reveals something about the

integrated density along that new path. With enough rays from enough angles, the pattern of

absorptions becomes an overdetermined system, and the distribution of density can be inverted

uniquely.

The same principle applies to acoustic measurement. When sonar sends a pulse toward a

distant object, the echo that returns carries information not just about distance but about the

shape and composition of the reflecting surface. If we send multiple pulses, varying in frequency

and arrival time, the pattern of reflections begins to reveal detailed structure. Submarines use

this principle in modern active sonar to construct not just a point estimate of distance but a full

acoustic image of the ocean floor, revealing canyons, ridges, and underwater geological features.

The key is variation: different measurement angles or timings create different patterns of reflec-

tion, and these patterns, when combined, yield more information than any single measurement

could provide.

1.3 Limit Order Books as Queues

To apply these sonar principles to financial markets, we must first understand how modern

markets came to be structured as electronic limit order books, and why this structure naturally

admits a queue-theoretic interpretation. For most of financial history, the matching of buyers

and sellers occurred through a human intermediary: a market maker standing on an exchange

floor, facilitating trades through voice negotiation and hand signals. The NYSE in the late

twentieth century still relied on specialists who physically stood at a post on the exchange floor,

maintaining order books on paper and on chalk boards, matching buy and sell orders by voice

and informal convention. This process had inherent limitations. The flow of information was

slow, constrained by the speed at which a human could process information and communicate

intentions. The order book itself was not fully transparent; the specialist could see the full

depth of interest, but did not have obligation to reveal all of it to the public.

1.3.1 Electronic Limit Order Book

The transition to electronic markets fundamentally changed this structure. Beginning in the

1970s with electronic communication networks (ECNs) in equities, and accelerating with the

NASDAQ stock market, trading moved from physical floors to computer networks. With this

transition came the limit order book: a data structure that maintains a queue of unfilled limit

orders, sorted by price and arrival time, with the highest-priority orders at the front of each
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queue. When a market order arrives, it executes against the best-priced limit orders in queue

order, removing shares as it progresses down the queue. The introduction of fully electronic

limit order books revealed a simple but profound insight: the problem of order execution in

markets with price-time priority is structurally identical to the classical queuing problem studied

in operations research. Consider the perspective of an institutional trader who wishes to execute

a large order. The trader can either (a) send a market order, which executes immediately but

pays the spread, or (b) send a limit order, which sits in queue hoping to execute as other orders

deplete the queue above it. The execution time depends on how deep the order sits in the

queue, how fast that queue depletes (determined by the arrival rate of market orders and the

cancellation rate), and when new orders arrive to cut ahead (which happens when the security’s

price moves).

1.4 The Beauty of Queues

The formal structure of this problem maps directly onto M/M/1 queue theory. Arrivals of

market orders can be modeled as a Poisson process with rate λM . Cancellations of limit orders

follow some rate λC . The queue depth Q at any moment determines the wait time for a new

order. Standard queueing results tell us that the expected wait time is E[τ ] = Q/(λM + λC).

Traders understood this intuitively long before formal analysis: the deeper the queue, the longer

the wait; the faster orders clear, the faster execution follows.

1.4.1 Queues Became Invisible

Yet here emerges a critical complication that breaks the simple queueing model. Modern markets

provide real-time information about the visible order book—typically the best ten price levels

on each side—to market participants through data feeds. But market participants can also hide

their true intent through iceberg orders. An iceberg order is a large standing order, the vast

majority of which is concealed. Only a small “visible portion” appears in the public order book

at any moment. As that visible portion executes, the exchange automatically replenishes it

from the hidden reserve, maintaining the appearance of a shallow queue while a much deeper

hidden queue actually exists. Iceberg orders emerged as a rational response to the information

leakage problem. When an institutional investor places a very large visible order in the market,

that visibility itself becomes information. Other market participants can see the order size and

infer the participant’s intentions. This inference creates adverse selection: other traders can

estimate that the institutional participant likely faces inventory pressure and begin to price

ahead of that assumed demand, widening spreads and increasing execution cost. By hiding

most of the order, the institutional participant disguises their true demand, reducing adverse

selection. But this concealment creates a new problem: it makes the true queue invisible to other

participants. From a queue-theoretic perspective, the true queue depth Qtrue that determines

execution time is no longer equal to the visible queue depth Qvisible observable from public

market data. Instead, we have

Qtrue = Qvisible +H (1.1)
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where H ≥ 0 represents the hidden volume concealed in iceberg orders. For a trader placing a

new order, this hidden volume is invisible. The trader observes Qvisible and estimates execution

time as τ̂naive = Qvisible/(λM+λC). But the true execution time will be τtrue = Qtrue/(λM+λC),

which is larger by a factor of (1+H/Qvisible) whenever hidden orders exist. This opacity repre-

sents the core economic problem. In modern limit order books, the fundamental state variable

that determines execution quality is no longer fully observable. Large institutional investors

and market makers make execution decisions based on incomplete information. Execution algo-

rithms that assume perfect liquidity observability will systematically underestimate execution

latency, leading to inefficient time-weighted average price (TWAP) and volume-weighted aver-

age price (VWAP) algorithms, and ultimately to higher implementation shortfall (the difference

between the price at decision time and the actual execution price weighted by volume).

1.4.2 Limit Order Book Tomography

Having established both the queue-theoretic structure of limit order books and the invisibility

problem created by iceberg orders, we can now articulate the parallel to sonar measurement.

The fundamental insight is this: just as a submarine operator must send an acoustic signal into

darkness to measure distance unambiguously, a trader or execution algorithm must send a signal

into the limit order book to measure the true queue depth. The mechanism is straightforward,

and we introduce it here through analogy rather than mathematics. First, a critical preliminary

observation: in modern limit order books operating under price-time priority, orders at a given

price level execute in strict First-In-First-Out (FIFO) order. This is the electronic market’s

equivalent of the disciplined queue in classical service theory. When a new order arrives at a

price where others are already waiting, it joins the back of the queue. When market orders

arrive, they execute against the front of the queue. This discipline is essential to what follows.

Now consider the sonar analogy more carefully. A submarine sends an acoustic pulse at time

t1 and receives an echo at time t2. The round-trip time τ = t2 − t1 encodes information about

distance. If the ocean were empty, the echo would return instantly (or not at all). If the ocean

is full of objects at various distances, the echo reflects off the nearest object, returning at a time

proportional to that distance. Apply this structure to the limit order book. We “send a pulse”

by submitting a limit order P1 of unit size at the best bid price at time t1. This order joins

the end of the queue at that price level. We then wait for the “echo”, the time T1 at which

our order executes, meaning all orders that were ahead of it in queue have been removed. The

quantity T1 − t1 tells us something about the queue depth at that moment.

But a single pulse tells us only about the queue depth at the moment of submission. Just as

sonar practitioners send multiple pulses to build up a detailed acoustic image, we can submit

a second probe order P2 at a slightly later time t2 = t1 + δ, where δ is a small, controlled time

gap. This second order also joins the end of the queue—but now the queue has evolved. New

limit orders may have arrived, adding to the queue depth. More importantly, market orders and

cancellations have also occurred, removing orders from the front of the queue. When P2 executes

at time T2, the interval T2−T1 encodes information not about absolute queue depth, but about

the queue depth evolution over the interval [t1, t2]. Here is where the tomographic principle
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enters. The distance between P1 and P2 in the queue can be decomposed into two components:

the visible volume that arrived between their submission times (which we can observe from the

market data feed), and the hidden volume from iceberg orders (which we cannot observe). The

conservation principle, which we will formalize mathematically in Chapter Two states that the

volume removed from the queue between the two execution times must equal the sum of these

two components. Stated intuitively: if we remove P1 and P2 from the queue, the total amount

of additional volume that must be depleted to get from P1 filling to P2 filling is exactly the

volume that stood between them when P2 was submitted. This depletion is observable from

the market tape: we can count every trade and every cancellation that occurred at that price

level between T1 and T2. By comparing observable depletion to observable visible arrivals, we

infer the hidden volume.

1.4.3 From Analogy to Precision

The sonar metaphor illuminates the core insight, but it necessarily simplifies. Real sonar must

contend with thermal layers in the ocean that refract sound, with multiple reflections that create

false echoes, with ambient noise that obscures the signal. Real limit order book probing must

similarly account for complications: order flow imbalance that modulates the rate at which the

queue depletes, regime changes in hidden liquidity usage by institutional traders, the possibility

that large market orders arrive and hit both probes simultaneously, the impact of latency on

the precision of our measurements. These complications do not invalidate the principle; they

require that we sharpen it. In Chapter Two, we will formalize the sonar metaphor through

mathematics, introducing the conservation law that justifies our measurement, deriving the

exact form of the iceberg density estimator, and accounting for order flow imbalance through

normalized latency. In Chapter Three, we will validate these derivations against historical

market data from the LOBSTER database, showing that the algorithm recovers hidden queue

structure with high precision across different market regimes. But before we undertake that

mathematical formalization, it is essential to understand the intuition. The submarine captain

utters “ONE PING only” not because one ping is theoretically optimal, but because commitment

to a single, well-designed measurement is more valuable than many tentative, cautious attempts.

In limit order book tomography, we apply the same principle: by committing to a sequence of

carefully structured probes, two limit orders submitted milliseconds apar we extract information

about the hidden queue structure that passive observation cannot reveal. We transform darkness

into measurement. We turn an invisible queue into visible knowledge. In the chapters that

follow, we make this intuition rigorous. But the intuition itself—that active measurement in

a queue behaves like sonar in an ocean, that conservation of volume in a FIFO queue reveals

hidden structure, that the echo of execution timing encodes information about invisibility—this

intuition is the foundation upon which everything that follows rests.



Chapter 2

One Ping Only

2.1 Theoretical Foundation

We formalize the limit order book (henceforth LOB) dynamics under the assumption of a Price-

Time Priority matching engine, where orders at a given price level are executed according to a

First-In-First-Out discipline.

2.1.1 The Queue Geometry and Price-Time Priority

The state of the queue at price p and time t, denoted by Q(t, p), evolves as a stochastic process

driven by the interplay of liquidity provision as well as consumption. Specifically, the queue

length is governed by the net aggregate of limit order arrivals, market order executions, and

cancellations, given by

Q(t, p) =
∑
i

vLi I{tLi ≤t} −
∑
j

vMj I{tMj ≤t} −
∑
k

vCk I{tCk ≤t} (2.1)

where vLi , v
M
j , and vCk represent the volumes of the i-th limit order, j-th market order, and

k-th cancellation, respectively. Under PTP, the queue position is the primary determinant of

execution quality. An order’s position governs its execution probability, as front-of-queue orders

are filled prior to those at the back; it dictates adverse selection risk, as orders deeper in the

queue are more exposed to toxic flow and ”picking-off” risks; and it defines the expected fill rate,

directly impacting the opportunity cost of waiting. Crucially, the observable queue Qvisible(t, p)

reported by market data feeds is often a strict subset of the true liquidity available. The true

queue depth Qtrue(t, p) accounts for hidden liquidity, commonly referred to as ”iceberg” or

reserve orders, such that:

Qtrue(t, p) = Qvisible(t, p) +H(t, p) (2.2)

where H(t, p) ≥ 0 represents the latent volume concealed from the public tape. To estimate this

latent component, we introduce a probe-based active inference mechanism. First, we submit two

sequential limit orders, P1 and P2, both of unit quantity, at the best bid(resp. ask) price p. P1

is submitted at t = 0, and P2 is submitted after a deterministic latency δ, at t = δ. Between the

submission of P1 and P2, the visible queue expands due to new limit order arrivals. We define

11
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the Gap Volume, Vgap, as the cumulative visible volume added to the queue during the interval

[0, δ]. Consequently, the true distance between the queue positions of P1 and P2, denoted q1

and q2, is the sum of the visible gap volume and the unknown hidden volume accumulated in

that interval:

q2 − q1 = Vgap +Hgap (2.3)

where Hgap is the hidden volume added between the probes. The core objective of the Mul-

tidimensional Latency Tomography algorithm is to recover Hgap by analyzing the differential

execution times of P1 and P2.

2.1.2 Multidimensional Intensity Framework

We model the order flow as a multivariate point process Nt = (NL
t , N

C
t , NM

t ), representing

the counting processes for limit orders, cancellations, and market orders, respectively. The

dynamics of these processes are characterized by their conditional execution intensities λ(t),

defined as the expected arrival rate conditioned on the filtration Ft of market history:

λX(t) = lim
∆t→0

E[NX
t+∆t −NX

t | Ft]

∆t
, X ∈ {L,C,M} (2.4)

Following the microstructure models of Cont et al. (2010) and Bacry et al. (2015), we

specify these intensities using a Hawkes process framework to capture the self-exciting and

cross-exciting nature of order book events. The intensity for event type i is given by a baseline

intensity µi augmented by a convolution of past events with an excitation kernel ϕij :

λi(t) = µi +
∑
j

∫ t

0
ϕij(t− s)dNj(s) (2.5)

For computational tractability, we employ an exponential decay kernel ϕij(u) = αije
−βiju,

which allows for efficient recursive estimation of the intensities. The effective rate of queue

depletion, which drives the execution of our probe orders, is the aggregate intensity of volume-

removing events:

λdepletion(t) = λM (t) + λC(t) (2.6)

2.1.3 Conservation and Tomographic Estimator

The theoretical anchor of the MDLT algorithm is a conservation law relating observable time

intervals to latent volume. Let T1 and T2 denote the execution times of probes P1 and P2,

respectively. Since P2 cannot execute until all orders preceding it, both visible and hidden

have been removed, the total volume depleted from the queue during the interval [T1, T2] must

exactly equal the volume standing between P1 and P2. We define the Observed Depletion, Dobs,

as the cumulative volume of market orders and cancellations recorded on the public tape at

price p between T1 and T2. This yields the fundamental conservation equation:
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Dobs =

∫ T2

T1

(dMt + dCt) = Vgap +Hgap (2.7)

rearranging this identity allows us to solve for the unobservable hidden volume Hgap in

closed form:

Hgap = Dobs − Vgap (2.8)

From this, we derive the Iceberg Density Coefficient, ρ, which quantifies the ratio of hidden

to visible liquidity in the local order book:

ρ =
Hgap

Vgap
=

Dobs

Vgap
− 1 (2.9)

A value of ρ ≈ 0 indicates a transparent order book, while ρ > 0 signals the presence of

iceberg orders. This coefficient is then used to construct the MDLT Priority Metric, QMDLT , a

rigorous estimate of the true effective queue position facing a new limit order:

QMDLT (t) = Qvisible(t) · (1 + ρ̄t) (2.10)

where ρ̄t is an exponentially weighted moving average of the iceberg density, smoothing out

microstructure noise. This metric provides a corrected input for optimal execution algorithms,

replacing the naive Qvisible with a latency-adjusted measure of queue priority.

2.1.4 Probe Order Placement

To actively interrogate the queue structure, we employ a differential latency measurement tech-

nique using paired probe orders. Let the current time be t0. We define a probe pair as a

sequence of two limit orders, denoted P1 and P2, submitted to the same side of the book (e.g.,

best bid) with identical unit quantity size sp = 1. The submission mechanism follows a strict

temporal discipline:

1. Probe P1: Submitted at time t1 = t0. Upon acceptance by the matching engine, it is

assigned a queue position q1 = Qtrue(t1, p) + 1.

2. Probe P2: Submitted at time t2 = t0 + δ, where δ > 0 is a deterministic inter-arrival

gap. Upon acceptance, it is assigned a queue position q2 = Qtrue(t2, p) + 1.

During the interval (t1, t2], the queue dynamics continue to evolve. New limit orders may

arrive, adding to the visible depth, while hidden orders (icebergs) may also be injected into the

queue. We define the Visible Gap Volume, Vgap, as the cumulative size of all visible limit orders

arriving at price p between the two probe submissions:

Vgap =
∑
k

vLk · I{t1<tLk≤t2} (2.11)

Similarly, letHgap denote the unobservable hidden volume arriving during this same interval.

The fundamental geometric relationship between the queue positions of the two probes is thus:
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q2 − q1 = Vgap +Hgap (2.12)

This equation establishes that the ”distance” between our probes in the execution queue is

strictly equal to the sum of visible and hidden liquidity added during the inter-arrival latency

δ.

2.1.5 Iceberg Density Ratio

We invoke the principle of volume conservation to derive the hidden liquidity parameters. Let

T1 and T2 denote the stochastic execution timestamps of probes P1 and P2, respectively. Under

the assumption of a FIFO matching algorithm, P2 executes only after all orders preceding it in

the queue have been depleted. Therefore, the total volume removed from the book between T1

and T2 must exactly match the queue volume standing between the two probes. We define the

Observed Depletion, Dobs, as the integral of the order flow depletion rate (market orders and

cancellations) over the execution interval [T1, T2]. Since market data feeds report these trades

and cancellations explicitly, Dobs is a fully observable quantity:

Dobs =

∫ T2

T1

(λM (t) + λC(t)) dt =
∑
j

vMj I{T1≤tMj ≤T2} +
∑
k

vCk I{T1≤tCk ≤T2} (2.13)

By equating the volume depleted to the volume separating the probes, we obtain the Con-

servation Law of Queue Tomography :

Dobs = q2 − q1 = Vgap +Hgap (2.14)

This identity allows us to isolate the unknown latent variable Hgap. Rearranging Equation

(2.14), we solve for the hidden volume:

Hgap = Dobs − Vgap (2.15)

To generalize this finding across different market regimes and asset classes, we define the

Iceberg Density Coefficient, ρ, as the ratio of hidden volume to visible volume added. This

dimensionless metric normalizes the hidden liquidity relative to the observable order flow:

ρ =
Hgap

Vgap
(2.16)

Substituting the expression for Hgap, we arrive at the operational formula for the MDLT

estimator:

ρ =
Dobs − Vgap

Vgap
=

Dobs

Vgap
− 1 (2.17)

Hence, by observing only public data (Dobs and Vgap), we can recover the scalar parameter

ρ that characterizes the hidden depth of the limit order book. A value of ρ ≈ 0 implies

Dobs ≈ Vgap, consistent with a fully lit market. Conversely, ρ > 0 provides a direct measure of

dark liquidity intensity.
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The Priority Metric

While the iceberg density coefficient ρ provides an instantaneous snapshot of hidden liquidity,

raw measurements derived from individual probe pairs are subject to stochastic microstructure

noise, arising from latency jitter and transient liquidity fluctuations. To construct a robust

estimator suitable for algorithmic execution, we employ an Exponentially Weighted Moving

Averag to smooth the density sequence. Let ρk denote the raw density estimate derived from

the k-th probe pair. The smoothed density state variable, ρ̄k, evolves according to the recursive

filter:

ρ̄k = αρk + (1− α)ρ̄k−1 (2.18)

where α ∈ (0, 1) is the decay factor controlling the memory of the estimator. A higher α

increases responsiveness to regime shifts in hidden liquidity usage, while a lower α enhances

stability against measurement noise.

We define theMDLT Priority Metric, denoted asQMDLT (t, p), as the effective queue position

adjusted for this latent volume. This metric transforms the observable queue depth reported by

the exchange into a ”virtual” queue depth that reflects the true liquidity barrier facing a new

limit order. For a visible queue size Qvisible(t, p), the effective position is given by:

QMDLT (t, p) = Qvisible(t, p) · (1 + ρ̄t) (2.19)

This formulation implies that for every unit of visible volume, the market participant must

anticipate competing against an additional ρ̄t units of hidden volume. Under the assumption

that order arrivals follow a locally stationary Poisson process with depletion intensity λdepletion =

λM + λC , we can derive the expected time-to-fill, E[τ ], for a newly submitted limit order.

Standard queueing theory dictates that the wait time is the ratio of the queue length to the

service rate. Substituting our adjusted metric yields:

E[τfill] =
QMDLT (t, p)

λM (t) + λC(t)
=

Qvisible(t, p)(1 + ρ̄t)

λdepletion(t)
(2.20)

This equation highlights the critical deficiency of naive models: strategies relying solely on

Qvisible systematically underestimate execution latency by a factor of (1+ρ̄t), leading to optimal

execution schedules that are overly passive and prone to adverse selection. QMDLT corrects this

bias, providing a mathematically consistent basis for execution logic.

Expected Wait Time Estimation

We formalize the execution latency, τ , as the first passage time of the cumulative depletion

process reaching the order’s effective queue position. Let D(t) represent the cumulative volume

removed from the queue via market orders and cancellations over the interval [0, t]. For a limit

order positioned at queue depth Q, the execution time is the stochastic stopping time defined

by:

τ(Q) = inf{t > 0 : D(t) ≥ Q} (2.21)
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Under the assumption that the depletion process D(t) follows a compound Poisson process

with a constant aggregate intensity λdepletion = λM + λC and unit volume increments, the

expectation of the stopping time is linear with respect to the queue depth. Standard queueing

theory yields the first moment:

E[τ(Q)] =
Q

λdepletion
(2.22)

In a market regime characterized by hidden liquidity, utilizing the observable queue depth

Qvisible yields a naive wait time estimator, τ̂naive. However, as derived in the previous section,

the true barrier to execution isQMDLT . Consequently, the corrected MDLT wait time estimator,

τ̂MDLT , is given by:

τ̂MDLT =
QMDLT

λM + λC
=

Qvisible(1 + ρ̄)

λM + λC
(2.23)

The discrepancy between these two estimators represents the Hidden Latency Bias. We can

express the relationship between the true and naive expectations as:

τ̂MDLT = τ̂naive · (1 + ρ̄) (2.24)

This multiplicative relationship highlights the non-linear risk of ignoring iceberg orders. In

regimes where ρ̄ ≈ 1 (hidden volume equals visible), the naive model underestimates the time-

to-fill by 50%. Such underestimation directly impacts optimal execution logic, particularly for

Almgren-Chriss style trajectories, where the estimated variance of execution cost is a function

of time. By substituting τ̂MDLT into the cost function, traders can accurately price the risk

of ”resting” in the queue versus paying the spread, thereby minimizing the implementation

shortfall caused by unexpected delays.

2.2 Order Flow Imbalance and Regime Normalization

A critical challenge in latency tomography is decoupling the structural properties of the queue

(depth) from the stochastic intensity of the arrival process (speed).

2.2.1 OFI-Corrected Latency Normalization

The raw execution latency T = T2 − T1 is inversely proportional to the queue depletion rate.

Consequently, a decrease in T could ambiguously signal either a shallower queue or a surge in

market aggressiveness. To resolve this ambiguity, we control for the Order Flow Imbalance,

which acts as a good measure for short-term buying or selling pressure. We define the Order

Flow Imbalance over an interval ∆t as the net flow of liquidity demanding events:

OFIt =
∑

t−∆t<s≤t

vMs · I{dirs=buy} −
∑

t−∆t<s≤t

vMs · I{dirs=sell} (2.25)

High-magnitude OFI regimes are characterized by elevated arrival intensities λM (t), which

systematically bias raw latency measurements downward. To isolate the queue depth contribu-
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tion, we introduce the Normalized Latency, τnorm. This metric rescales the raw time-domain

measurement into ”volume-time” units, effectively normalizing for the varying speed of market

depletion:

τnorm = (T2 − T1) ·
(
λ̂M + λ̂C

)
(2.26)

By multiplying the time duration by the estimated depletion intensity, τnorm approximates

the total volume processed by the market during the probe interval. Unlike raw latency, this

quantity is invariant to changes in trading tempo and provides a more stable basis for estimating

the effective queue size QMDLT across different volatility regimes.

2.2.2 Regime-Dependent Density Estimation

Empirical evidence suggests that the presence of iceberg orders is not uniform but highly state-

dependent. Institutional algorithms tend to vary their concealment logic based on market

urgency and volatility. Therefore, a global average ρ̄ may lack the specificity required for

precision execution. To address this, we adopt a regime-switching framework conditioned on

the OFI distribution. We partition the trading day into K distinct regimes based on the

quintiles of the OFI distribution, denoted as Rk for k ∈ {1, . . . , 5}. We maintain separate

exponentially weighted moving averages for the iceberg density coefficient within each regime.

Let ρ̄(k) represent the density estimator specific to the k-th OFI quintile. The update rule is

applied conditionally:

ρ̄
(k)
t =

αρt + (1− α)ρ̄
(k)
t−1 if OFIt ∈ Rk

ρ̄
(k)
t−1 otherwise

(2.27)

The final Priority Metric is then constructed dynamically by selecting the density coefficient

corresponding to the current market regime:

QMDLT (t) = Qvisible(t) ·

(
1 +

5∑
k=1

I{OFIt∈Rk}ρ̄
(k)
t−1

)
(2.28)

This stratified approach allows the MDLT algorithm to adapt to changing market mi-

crostructures, applying a higher ”hidden liquidity penalty” in regimes known to feature heavy

iceberg usage (e.g., low-volatility accumulation periods) while relaxing the penalty in high-

velocity trends where liquidity is predominantly visible.
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2.2.3 Real-Time Intensity Estimation

Algorithm 1 Estimate Order Flow Intensities

1: Input: Live market feed {(ti, typei, vi, pi)}ni=1, lookback window Twin

2: Output: Intensity vector [λL, λC , λM ]
3: Initialize counters: NL ← 0, NC ← 0, NM ← 0
4: for each event i in feed do
5: if tnow − ti < Twin then
6: if typei = “Limit” then
7: NL ← NL + 1
8: else if typei = “Cancel” then
9: NC ← NC + 1

10: else if typei = “Trade” then
11: NM ← NM + 1
12: end if
13: end if
14: end for
15: λL ← NL/Twin

16: λC ← NC/Twin

17: λM ← NM/Twin

18: Return [λL, λC , λM ]

2.2.4 Probe Pair Execution with Tomographic Scan

Algorithm 2 MDLT Probe Pair Execution

1: Input: Best bid price p∗, gap δ (ms), quantity q = 1
2: Output: (T1, T2, Dobs, Vgap)
3: Step 1: Observe Qvisible ← current LOB depth at p∗

4: Step 2: Submit P1: Limit Buy, Qty=1, Price=p∗

5: Step 3: Wait for fill, record T1 ← execution timestamp
6: Step 4: Sleep δ milliseconds
7: Step 5: Submit P2: Limit Buy, Qty=1, Price=p∗

8: Step 6: Wait for fill, record T2 ← execution timestamp
9: Step 7: Scan market tape during [T1, T2]:

10: Dobs ← 0
11: for each event e in [T1, T2] do
12: if type(e) = “Trade” and price(e) = p∗ then
13: Dobs ← Dobs + volume(e)
14: else if type(e) = “Cancel” and price(e) = p∗ then
15: Dobs ← Dobs + volume(e)
16: end if
17: end for
18: Step 8: Calculate visible adds:
19: Vgap ← sum of Limit orders at p∗ during (0, δ)
20: Step 9: Compute ρ← (Dobs/Vgap)− 1
21: Step 10: Update rolling average:
22: ρsmooth ← 0.9× ρsmooth + 0.1× ρ
23: Return (T1, T2, Dobs, Vgap)
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2.2.5 Priority Metric Calculation

Algorithm 3 Compute Q MDLT

1: Input: Qvisible, ρsmooth, [λL, λC , λM ]
2: QMDLT ← Qvisible × (1 + ρsmooth)
3: µdepletion ← λM + λC

4: E[τ ]← QMDLT/µdepletion

5: Return (QMDLT,E[τ ])

2.3 Numerical Example

In this section, we ground the abstract principles developed thus far in a concrete market

scenario. We present a detailed worked example showing how the tomographic measurement

principle operates in practice, from the submission of probe orders through the calculation

of hidden liquidity and the implications for execution strategy. This example is not merely

illustrative; it demonstrates the mechanical operation of the MDLT framework and validates

the claim that passive observation of the order book leaves critical information hidden.

2.3.1 Scenario Setup

We consider a liquid equity market at mid-morning trading hours, when volatility is moderate

and order flow is predictable. The conditions are as follows:

Table 2.1: Market Conditions at Probe Submission Time

Parameter Value

Security Apple Inc. (AAPL)
Best Bid Price $100.00
Best Ask Price $100.01
Bid-Ask Spread $0.01 (1 cent)
Visible Queue Depth at Bid 500 shares
Market Time 10:30:00.000 (mid-morning)
Market Regime Moderate volatility, normal activity

The visible queue of 500 shares represents limit buy orders placed at the best bid price of

$100.00. These are the orders that any market participant can observe through the public order

book feed. However, as discussed in Section ??, this visible depth likely understates the true

queue depth because of iceberg orders. Our goal is to measure this hidden component through

active probing.

2.3.2 Probe Sequence and Execution Timeline

We now trace the sequence of events as our two probe orders proceed through the matching

engine. Each probe is a limit buy order of unit size (one share) submitted to the best bid price.

The temporal spacing between submissions is critical: it defines the window over which we will

observe queue dynamics.



20 CHAPTER 2. ONE PING ONLY

Table 2.2: Probe Order Timeline: Submission and Execution

Time (HH:MM:SS.mmm) Event Details

10:30:00.000 Submit P1 Limit Buy 1 share @ $100.00
10:30:00.025 Submit P2 Limit Buy 1 share @ $100.00 (δ = 25 ms)
10:30:00.058 P1 executes Execution time T1 = 58 ms after submission
10:30:00.087 P2 executes Execution time T2 = 87 ms after P1 submission

The inter-probe gap is δ = 25 milliseconds. This gap is chosen to be long enough to allow

meaningful market activity (new limit orders, cancellations, market orders) to occur between

submissions, but short enough that market regime (volatility, order flow intensity) remains

approximately stationary. The execution times T1 = 58 ms and T2 = 87 ms reflect the time

elapsed from the initial submission of P1 until each probe fills.

The key observation is that P1 and P2 do not execute instantaneously. Each must wait for

all orders ahead of it in the FIFO queue to be removed through either market order execution

or cancellation. The wait time for P1 is 58 milliseconds. By the time P2 executes, an additional

29 milliseconds have passed. This additional waiting time encodes information about the queue

state at the moment P2 was submitted.

2.3.3 Inter-Execution Market Activity

Between the execution of P1 (at 58 ms) and the execution of P2 (at 87 ms), the order book is

not quiescent. Market orders arrive and execute against standing limit orders. Some traders

cancel their orders. The public market tape records all of these events. We now enumerate

what occurred during this 29-millisecond interval.

Table 2.3: Market Tape Events in the Interval [T1, T2] (Execution Interval)

Event Type at $100.00 Bid Volume (shares) Cumulative Volume

Market Sell @ $100.00 80 80
Market Sell @ $100.00 120 200
Cancel (Limit Order) @ $100.00 50 250
Market Sell @ $100.00 90 340
Market Sell @ $100.00 60 400

Total Volume Removed 400

The table above represents the complete market activity at the best bid price during the

execution interval. A market sell is an aggressive order that executes immediately against the

best standing bid, removing shares from the queue. A cancellation is a limit order withdrawal,

also removing shares from the queue but not resulting in a transaction.

We aggregate across event types to obtain the total observed depletion:

Dobs = (market orders executed) + (limit orders cancelled) = 350 + 50 = 400 shares (2.29)
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This quantity Dobs is fully observable from the market data feed. Every trade is time-

stamped and reported. Every cancellation is announced to the market. Therefore, Dobs = 400

shares is a fact, not an estimate or inference.

2.3.4 Observable Queue Additions

While market activity removes volume from the queue during the interval [T1, T2], other market

participants are adding volume to the queue. Specifically, new limit orders arrive at the best

bid price after P1 is submitted but before P2 executes. These arrivals are equally observable

from the market data feed. We define the gap volume as the cumulative size of all limit orders

that arrive at the best bid price during the inter-probe interval [0, δ], where time zero is the

submission of P1 and time δ = 25 ms is the submission of P2:

Table 2.4: Limit Order Arrivals During the Probe Gap [0, δ]

Time (HH:MM:SS.mmm) Event: Limit Buy Arrivals at $100.00

10:30:00.005 Arrival of 20 shares
10:30:00.018 Arrival of 30 shares

Total Gap Volume 50 shares

These arrivals represent new buy-side limit orders placed at the best bid price. They become

part of the queue at the bid price, appearing in the public order book for all market participants

to see. Thus, the gap volume Vgap = 50 shares is also fully observable.

2.3.5 Conservation Principle

We now invoke the conservation principle introduced in Section ??. This principle states that

the volume removed from the queue between the execution times of the two probes must equal

the distance separating those probes in the queue. Formally, the distance between P1 and P2

in the execution queue is the sum of two components: the visible volume that arrived between

their submission times, plus any hidden volume from iceberg orders:

Distance between P1 and P2 = Vgap +Hgap (2.30)

Here, Vgap is the observable gap volume (which we computed as 50 shares), and Hgap is the

unobservable hidden volume from iceberg orders in the same interval.

Now, a fundamental fact about FIFO queue discipline: an order cannot execute until all

orders ahead of it have been removed. When P2 executes at time T2, this means all volume

separating P1 from P2 must have been depleted between the execution times T1 and T2. The

volume depleted is precisely what we observe from the market tape: Dobs = 400 shares.

By conservation:

Dobs = Vgap +Hgap (2.31)

Rearranging to solve for the hidden component:
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Hgap = Dobs − Vgap = 400− 50 = 350 shares (2.32)

This is the key result. Between the submission of our two probes, hidden iceberg orders

concealed 350 shares of volume. This volume was never visible in the public order book, yet it

constrained execution, added to the effective queue depth, and affected the execution dynamics

of any trader trying to execute at the best bid.

2.3.6 Iceberg Density Estimation

We now normalize the hidden volume relative to the visible volume to create a dimensionless

measure of iceberg intensity. The iceberg density coefficient ρ is defined as the ratio of hidden

to visible volume:

ρ =
Hgap

Vgap
(2.33)

Equivalently, substituting our expression for Hgap:

ρ =
Dobs

Vgap
− 1 (2.34)

In our numerical example:

ρ =
400

50
− 1 (2.35)

= 8− 1 (2.36)

= 7.0 (2.37)

This result indicates that for every one share of visible liquidity in this interval, seven shares

of hidden liquidity existed. Stated differently, the hidden volume is 700% of the visible volume,

or equivalently, the true queue is eight times deeper than the visible queue suggests.

On Iceberg Density

An iceberg density of 7.0 is high, indicating unusually heavy use of hidden orders during this

interval. In normal market conditions, typical values of ρ range from 0.2 to 0.6, indicating that

hidden volume is 20% to 60% of visible volume. The elevated value in our scenario suggests one

of several possibilities: (a) a large institutional investor is executing a significant block trade

and has hidden most of their order; (b) market makers are using iceberg orders to manage

inventory risks during a volatile period; or (c) the visible queue is unusually shallow due to

earlier trading activity, making hidden orders appear more prominent.

The interpretation is straightforward: ρ = 0 would mean the order book is fully transparent,

with no hidden liquidity. ρ > 0 indicates the presence of iceberg orders. Higher values of ρ

indicate heavier reliance on concealment strategies.
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2.3.7 Adjusted Queue Position

Having measured the iceberg density from our probe pair, we can now apply this information to

refine our understanding of the queue depth at subsequent times. Suppose that at time t = 87

ms (the moment when P2 executes), a trader wishes to submit a new large limit order at the

same price level. The trader observes from the public order book that the visible queue depth

is Qvisible = 500 shares.

If the trader naively assumes that this visible depth is the true queue depth, they will

make execution decisions under the assumption that the queue is shallow. However, our probe

measurement has just revealed that during the recent interval, the iceberg density was ρ =

7.0. Assuming this density persists (an assumption we will refine in Chapter Two through

smoothing), the true effective queue depth is:

QMDLT = Qvisible × (1 + ρ) (2.38)

= 500× (1 + 7.0) (2.39)

= 500× 8 (2.40)

= 4000 shares (2.41)

The MDLT metric adjusts the visible queue by the factor (1 + ρ) to account for hidden

liquidity. In this case, the adjustment is substantial: a visible queue of 500 shares becomes an

effective queue of 4000 shares. This adjustment captures the intuition that hidden icebergs act

as additional layers of queueing depth, even though they are not visible.

2.3.8 Wait Time Estimation

With an adjusted queue position in hand, we can now estimate expected execution times using

queueing theory. Recall that under the M/M/1 queue model, the expected wait time for an

order at queue position Q is

E[τ ] =
Q

λM + λC
(2.42)

where λM is the rate of market order arrivals and λC is the rate of cancellations (both

measured in shares per second). For our scenario, we estimate from recent market data that

the combined depletion rate is λM + λC = 50 shares per second.

Naive Estimate

A trader who observes only the visible queue would estimate:



24 CHAPTER 2. ONE PING ONLY

E[τnaive] =
Qvisible

λM + λC
(2.43)

=
500

50
(2.44)

= 10 seconds (2.45)

This estimate suggests that the queue will clear in 10 seconds, a reasonable wait time. Based

on this estimate, the trader might decide that joining the queue at the best bid is preferable to

paying the spread through a market order.

Multidimensional Latency Estimates

Our measurement, however, reveals a different picture:

E[τMDLT] =
QMDLT

λM + λC
(2.46)

=
4000

50
(2.47)

= 80 seconds (2.48)

≈ 1.3 minutes (2.49)

The MDLT estimate suggests that the order will wait approximately 80 seconds—a much

longer duration. This dramatic difference arises entirely from the hidden liquidity revealed by

our probes.

Decision Rule

The trader now faces a different calculus. An 80-second wait exposes the position to significant

price risk. If the market price moves by even a few cents against the position during that wait,

the cost of the move will exceed the spread savings from joining the limit order queue. The

decision rule might be structured as follows:

First, we classify order sizes into categories based on the expected wait time and associated

risks:

(a) Small Orders (N < 100 shares): Even with an 80-second wait, the order is small enough

that it likely clears quickly from the queue. The decision is to join the queue at the best

bid. Expected wait time is less than 1-2 seconds even after MDLT adjustment.

(b) Medium Orders (100 ≤ N ≤ 1000 shares): The wait time becomes material. The

trader should consider a time-weighted average price (TWAP) algorithm that spreads the

execution across a longer time horizon (e.g., 10-15 minutes), reducing the impact of any

single segment of the order joining the queue at a given moment.

(c) Large Orders (N > 1000 shares): The wait time in a queue with depth equivalent to

4000 shares is prohibitive. The trader is better served by using market orders (paying the
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spread immediately) or seeking out hidden liquidity pools and alternative trading venues

where the queue structure may be different.

You Can’t Ignore Me

To quantify the cost of ignoring the hidden liquidity, consider a specific scenario. Suppose

the trader places a 1000-share order at the best bid, intending to wait for execution. Under

the naive model, the trader expects execution in 20 seconds (1000/50). However, the MDLT

model reveals the true wait time is 160 seconds. During that additional 140-second wait, the

market price might move. If the midpoint price rises by just 0.05 (five cents), the trader loses

1000 × 0.05 = $50 due to the price move, an amount that vastly exceeds the $0.01 spread

savings from using a limit order. Conversely, if the trader had used the MDLT measurement

to inform the execution strategy, they might have chosen to (a) submit smaller segments of the

order across multiple price levels, (b) access hidden liquidity through alternative venues, or (c)

use market orders to ensure immediate execution at a known price. Each of these alternatives

protects against the risk of unexpected price movement during the wait.

2.4 Risk Analysis

Every active measurement carries an economic cost. Unlike passive inference, which requires

only data observation, active probing requires sending orders into the market. These orders

must execute to generate the signal we need, and execution incurs trading costs. Understand-

ing and managing these costs is critical to ensuring that the value of measurement exceeds its

price.The MDLT framework provides a principled approach to measuring hidden queue depth,

yet like all measurement systems operating in complex environments, it is subject to costs,

model assumptions, and failure modes. This section systematically examines these constraints

and proposes mitigation strategies. Understanding these limitations is essential: a robust mea-

surement system is one that explicitly acknowledges where it may fail and implements safeguards

accordingly.

Spread Cost Per Probe Pair

The direct cost of submitting a probe pair arises from the bid-ask spread. When we submit

a limit buy order at the best bid price, it executes at that bid price. We thus “pay” the full

bid-ask spread in the sense that we sell to the market at the bid price, which is lower than the

contemporaneous ask price. For a probe order of unit size (one share), the cost is the spread

itself:

Cprobe pair = 2× s

2
= s (2.50)

where s denotes the bid-ask spread. Each of our two probes costs half the spread (since

we execute at the bid and the ask midpoint is halfway between bid and ask). Summing both

probes yields a total cost equal to the full spread. For highly liquid securities such as AAPL,

which typically trade with spreads of one penny, the cost per probe pair is:
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Cprobe pair = $0.01 (2.51)

This cost is minimal in absolute terms. However, for the measurement to create positive

economic value, the information gain must justify this cost. We therefore define a break-even

condition.

Break-Even Analysis

The information extracted from a probe pair is valuable only if it prevents greater losses in

the subsequent main order execution. Let ∆slippage denote the per-share reduction in slippage

(measured in dollars per share) that results from using MDLT-informed execution versus naive

execution. For a main order of size N shares, the total benefit from improved execution is:

Benefit = N ×∆slippage (2.52)

For the measurement to be economical, the benefit must exceed the cost:

N ×∆slippage > Cprobe pair (2.53)

Rearranging to solve for the break-even order size:

Nbreak-even =
Cprobe pair

∆slippage
=

s

∆slippage
(2.54)

To make this concrete, consider a realistic scenario. Suppose accurate queue depth measure-

ment prevents one basis point (0.01%) of slippage per share. For AAPL trading at approximately

$150 per share, one basis point is 150× 0.0001 = $0.015 per share. With a probe cost of $0.01

per pair:

Nbreak-even =
0.01

0.015
≈ 667 shares (2.55)

Alternatively, if we estimate more conservatively that MDLT prevents 1 basis point of slip-

page in dollar terms (not percentage terms), then:

Nbreak-even =
0.01

0.0001
= 100 shares (2.56)

In practice, institutional investors executing orders of 100 to 10,000 shares are common

in equity markets. The break-even threshold of 100–700 shares is well within the range of

institutional order sizes. For smaller retail orders (fewer than 100 shares), the measurement

cost exceeds the likely benefit. For institutional orders, the measurement is economical.

Probe Non-Execution

A subtle but important risk arises if probe orders fail to execute promptly. Our methodology

assumes that both P1 and P2 execute within a short time window (typically tens to hundreds of

milliseconds). If the market price moves away from the best bid during the measurement inter-

val, our limit buy orders will sit unfilled in the queue without contributing to the measurement
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signal. Specifically, if the security’s price rises above our limit bid price (e.g., if the best bid

moves from $100.00 to $100.01), our limit orders become “out of the money” and will not exe-

cute until the price falls back. This creates two problems. First, we have submitted orders but

received no signal; the measurement is incomplete. Second, if the price does later drop back,

our old orders may execute far later than intended, at a time when market conditions have

changed and the measurement signal has become stale.nTo mitigate this risk, we recommend

using immediate-or-cancel (IOC) orders for probes rather than persistent limit orders. An IOC

probe is a limit order that executes any portion that matches immediately, and any remainder

is automatically cancelled. We would typically set a timeout window (e.g., 200 milliseconds)

within which the probe must execute. If it does not execute within that window, it is cancelled,

and we attempt a fresh probe in the next measurement cycle. The tradeoff is that IOC probes

may not execute at all if market conditions are adverse (e.g., large spreads, shallow depth). In

that case, we obtain no measurement signal. However, a non-signal in an adverse market regime

is arguably more informative than a delayed signal that reflects stale conditions. We recommend

monitoring the probe execution rate: if the fraction of probe pairs that execute drops below

80%, this indicates either a regime change (wider spreads, lower liquidity) or technical issues

with order submission, both of which warrant immediate recalibration.
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2.5 Code Template

2.5.1 Intensity Estimation

import numpy as np

import pandas as pd

class IntensityEstimator:

def __init__(self, lookback_window=60):

"""

lookback_window: seconds of history for rate estimation

"""

self.lookback_window = lookback_window

self.event_buffer = []

def update(self, event_type, timestamp):

"""

event_type: ’limit’, ’cancel’, ’trade’

timestamp: float (seconds since epoch)

"""

self.event_buffer.append((event_type, timestamp))

# Prune old events

cutoff = timestamp - self.lookback_window

self.event_buffer = [(t, ts) for (t, ts) in self.event_buffer

if ts >= cutoff]

def estimate_intensities(self):

"""

Returns: (lambda_L, lambda_C, lambda_M) in events/second

"""

if len(self.event_buffer) == 0:

return (0, 0, 0)

counts = {’limit’: 0, ’cancel’: 0, ’trade’: 0}

for event_type, _ in self.event_buffer:

counts[event_type] = counts.get(event_type, 0) + 1

lambda_L = counts[’limit’] / self.lookback_window

lambda_C = counts[’cancel’] / self.lookback_window

lambda_M = counts[’trade’] / self.lookback_window

return (lambda_L, lambda_C, lambda_M)
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2.5.2 Probe Pair Submission

import time

from ib_insync import IB, LimitOrder

class MDLTProbeExecutor:

def __init__(self, ib_connection, gap_ms=50):

self.ib = ib_connection

self.gap_ms = gap_ms

self.rho_history = []

def submit_probe_pair(self, symbol, bid_price):

"""

Returns: (T1, T2, D_obs, V_gap, rho)

"""

# Step 2: Submit P1

contract = Stock(symbol, ’SMART’, ’USD’)

order_p1 = LimitOrder(’BUY’, 1, bid_price)

trade_p1 = self.ib.placeOrder(contract, order_p1)

# Step 3: Wait for fill, record T1

while not trade_p1.isDone():

self.ib.sleep(0.001)

T1 = trade_p1.log[-1].time.timestamp()

# Step 4: Sleep delta

time.sleep(self.gap_ms / 1000.0)

# Step 5: Submit P2

order_p2 = LimitOrder(’BUY’, 1, bid_price)

trade_p2 = self.ib.placeOrder(contract, order_p2)

# Step 6: Record T2

while not trade_p2.isDone():

self.ib.sleep(0.001)

T2 = trade_p2.log[-1].time.timestamp()

# Step 7-8: Scan market tape (requires market data subscription)

D_obs = self.scan_market_activity(symbol, T1, T2, bid_price)

V_gap = self.calculate_gap_volume(symbol, 0, self.gap_ms / 1000, bid_price)

# Step 9: Compute rho

if V_gap > 0:
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rho = (D_obs / V_gap) - 1

else:

rho = 0

# Step 10: Update rolling average

self.rho_history.append(rho)

if len(self.rho_history) > 10:

self.rho_history.pop(0)

return (T1, T2, D_obs, V_gap, rho)

def scan_market_activity(self, symbol, T1, T2, price):

"""

Query tick data for [T1, T2], sum trades and cancels at price

Returns: D_obs (int)

"""

# Placeholder: requires market data subscription

# In practice: query historical ticks from IB or LOBSTER

return 100 # dummy value

def calculate_gap_volume(self, symbol, t_start, t_end, price):

"""

Sum visible limit order adds during [t_start, t_end] at price

Returns: V_gap (int)

"""

# Placeholder

return 50

2.5.3 Queue Position Prediction

class QueuePredictor:

def __init__(self, alpha=0.1):

self.alpha = alpha

self.rho_smooth = 0

def update_rho(self, rho_new):

"""

Exponential smoothing

"""

self.rho_smooth = (1 - self.alpha) * self.rho_smooth + self.alpha * rho_new

def predict_queue_position(self, Q_visible, lambda_M, lambda_C):

"""
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Returns: (Q_MDLT, expected_wait_time)

"""

Q_MDLT = Q_visible * (1 + self.rho_smooth)

mu_depletion = lambda_M + lambda_C

if mu_depletion > 0:

wait_time = Q_MDLT / mu_depletion

else:

wait_time = float(’inf’)

return (Q_MDLT, wait_time)
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2.6 Proofs

This section presents the various proofs of the different concepts mentioned in this book.

2.6.1 Conservation Law

Queue at price p∗ evolves as:

Q(t) = Q(0) +

∫ t

0
dNL(s)−

∫ t

0
dNM (s)−

∫ t

0
dNC(s)

For probe P1 at position q1, execution at T1 implies:∫ T1

0
(dNM (s) + dNC(s)) = q1

For P2 at position q2 = q1 + Vgap +Hgap:∫ T2

0
(dNM (s) + dNC(s)) = q2 = q1 + Vgap +Hgap

Subtracting: ∫ T2

T1

(dNM (s) + dNC(s)) = Vgap +Hgap

But LHS is observable:

Dobs =

∫ T2

T1

dNM (s) +

∫ T2

T1

dNC(s)

Hence:

Hgap = Dobs − Vgap

2.6.2 Unbiasedness Under Poisson Assumptions

Theorem: IfNM (t), NC(t) are Poisson with constant rates λM , λC , and icebergs refill uniformly

in time, then E[Ĥgap] = Hgap.

Proof :

E[Dobs] = E
[∫ T2

T1

dNM (s) + dNC(s)

]
= (λM + λC)E[T2 − T1]

By definition, T2 − T1 is the time to deplete q2:

E[T2 − T1] =
q2

λM + λC
=

Vgap +Hgap

λM + λC

Substituting:

E[Dobs] = (λM + λC) ·
Vgap +Hgap

λM + λC
= Vgap +Hgap

Hence:

E[Ĥgap] = E[Dobs − Vgap] = (Vgap +Hgap)− Vgap = Hgap


	The Range to Target
	Measurement as a Form of Revelation
	Passive Measurement
	Active Measurement

	Reconstructing Invisible Structure
	Limit Order Books as Queues
	Electronic Limit Order Book

	The Beauty of Queues
	Queues Became Invisible
	Limit Order Book Tomography
	From Analogy to Precision


	One Ping Only
	Theoretical Foundation
	The Queue Geometry and Price-Time Priority
	Multidimensional Intensity Framework
	Conservation and Tomographic Estimator
	Probe Order Placement
	Iceberg Density Ratio

	Order Flow Imbalance and Regime Normalization
	OFI-Corrected Latency Normalization
	Regime-Dependent Density Estimation
	Real-Time Intensity Estimation
	Probe Pair Execution with Tomographic Scan
	Priority Metric Calculation

	Numerical Example
	Scenario Setup
	Probe Sequence and Execution Timeline
	Inter-Execution Market Activity
	Observable Queue Additions
	Conservation Principle
	Iceberg Density Estimation
	Adjusted Queue Position
	Wait Time Estimation

	Risk Analysis
	Code Template
	Intensity Estimation
	Probe Pair Submission
	Queue Position Prediction

	Proofs
	Conservation Law
	Unbiasedness Under Poisson Assumptions



